Skip to content Skip to navigation

Article: Early evolution of the Eukaryota

Publication: Palaeontology
Volume: 58
Part: 1
Publication Date: January 2015
Page(s): 5 17
Author(s): Nicholas J. Butterfield
Addition Information

How to Cite

BUTTERFIELD, N.J. Early evolution of the Eukaryota. Palaeontology, 1, 5-17.

Author Information

  • Nicholas J. Butterfield - Department of Earth Sciences, University of Cambridge, Cambridge, UK (email: njb1005@cam.ac.uk)

Publication History

  • Issue published online: 7 JAN 2015
  • Article first published online: 26 NOV 2014
  • Manuscript Accepted: 17 OCT 2014
  • Manuscript Received: 11 SEP 2014

Online Version Hosted By

Wiley Online Library (Free Access)
Get Article: Wiley Online Library [Free Access]

References

  • Adam, Z. R., Mogj, D. W., Skidmore, M. and Butterfield, N. J. 2014. Microfossils from the Greyson Formation, Lower Belt Supergroup: support for early Mesoproterozoic biozonation. Geological Society of America Abstracts with Programs, 46 (5), 71.
  • Ader, M., Sansjofre, P., Halverson, G. P., Busigny, V., Trindade, R. I. F., Kunzmann, M. and Nogueira, A. C. R. 2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth & Planetary Science Letters, 396, 1–13.
  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A. and Spiegel, F. W. 2012. The revised classification of Eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–514.
  • Agić, H., Moczydlowska, M. and Yin, L. in press. Affinity, life cycle and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China. Journal of Paleontology.
  • Berney, C. and Pawlowski, J. 2006. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society B: Biological Sciences, 273, 1867–1872.
  • Brown, J. W. and Sorhannus, U. 2010. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE, 5, e12759.
  • Budd, G. E. 2003. The Cambrian fossil record and the origin of the phyla. Integrative and Comparative Biology, 43, 157–165.
  • Butterfield, N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23, 247–262.
  • Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.
  • Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative & Comparative Biology, 43, 166–177.
  • Butterfield, N. J. 2004. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30, 231–252.
  • Butterfield, N. J. 2005. Probable Proterozoic fungi. Paleobiology, 31, 165–182.
  • Butterfield, N. J. 2007. Macroevolution and macroecology through deep time. Palaeontology, 50, 41–55.
  • Butterfield, N. J. 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research, 173, 201–211.
  • Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology & Evolution, 26, 81–87.
  • Butterfield, N. J, Knoll, A. H and Swett, N. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Fossils and Strata, 34, 1–84.
  • Campbell, S. E. 1980. Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). Phycologia, 19, 25–36.
  • Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic & Evolutionary Microbiology, 52, 297–354.
  • Cavalier-Smith, T. 2009. Predation and eukaryote cell origins: a coevolutionary perspective. The International Journal of Biochemistry & Cell Biology, 41, 307–322.
  • Cavalier-Smith, T. 2010. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biology Direct, 5, 7.
  • Cavalier-Smith, T. 2013. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.
  • Chernikova, D., Motamedi, S., Csürös, M., Koonin, E. V. and Rogozin, I. B. 2011. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biology Direct, 6, 26.
  • Cohen, P. A., Schopf, J. W., Butterfield, N. J., Kudryavtsev, A. B. and Macdonald, F. A. 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology, 39, 539–542.
  • Conway Morris, S. 2003. Life's solution: inevitable humans in a lonely universe. Cambridge University Press, Cambridge, 464 pp.
  • Davidov, Y. and Jurkevitch, E. 2009. Predation between prokaryotes and the origin of eukaryotes. BioEssays, 31, 748–757.
  • de Duve, C. 2005. Singularities: landmarks on the pathways of life. Cambridge University Press, Cambridge, 258 pp.
  • Desmond, E. and Gribaldo, S. 2009. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biology & Evolution, 1, 364–381.
  • Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F. and Philippe, H. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proceedings of the National Academy of Sciences of the United States of America, 101, 15386–15391.
  • Embley, T. M. and Martin, W. 2006. Eukaryotic evolution, changes and challenges. Nature, 440, 623–630.
  • Eme, L., Sharpe, S. C., Brown, M. W. and Roger, A. J. 2014. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harbor Perspectives in Biology. doi: 10.1101/cshperspect.a016139.
  • Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334, 1091–1097.
  • Ettema, T. J. G., Lindås, A.-C. and Bernander, R. 2011. An actin-based cytoskeleton in archaea. Molecular Microbiology, 80, 1052–1061.
  • Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L., Dacks, J. B., Carpenter, M. L., Field, M. C., Kuo, A., Paredez, A., Chapman, J., Pham, J., Shu, S., Neupane, R., Cipriano, M., Mancuso, J., Tu, H., Salamov, A., Lindquist, E., Shapiro, H., Lucas, S., Grigoriev, I. V., Cande, W. Z., Fulton, C., Rokhsar, D. S. and Dawson, S. C. 2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140, 631–642.
  • Gross, J. and Bhattacharya, D. 2010. Uniting sex and eukaryote origins in an emerging oxygenic world. Biology Direct, 5, 53.
  • Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. and Smetacek, V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421, 841–843.
  • He, D., Fiz-Palacios, O., Fu, C.-J., Tsai, C.-C. and Baldauf, S. L. 2014. An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.
  • Hedges, S. B., Blair, J. E., Venturi, M. L. and Shoe, J. L. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4, 2.
  • Hermann, T. N. and Podkovyrov, V. N. 2010. A discovery of Riphean heterotrophs in the Lakhanda Group of Siberia. Paleontological Journal, 44, 374–383.
  • Javaux, E. J., Knoll, A. H. and Walter, M. 2003. Recognizing and interpreting the fossils of early eukaryotes. Origins of Life & Evolution of the Biosphere, 33, 75–94.
  • Javaux, E. J., Knoll, A. H. and Walter, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2, 121–132.
  • Javaux, E. J., Marshall, C. P. and Bekker, A. 2010. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature, 463, 934–938.
  • Keeling, P. J. 2010. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 729–748.
  • Kinosita, Y., Nakane, D., Sugawa, M., Masaike, T., Mizutani, K., Miyata, M. and Nishizaka, T. 2014. Unitary step of gliding machinery in Mycoplasma mobile. Proceedings of the National Academy of Sciences, 111, 8601–8606.
  • Knoll, A. H. 2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology, 6 (1). doi: 10.1101/cshperspect.a016121.
  • Knoll, A., Javaux, E., Hewitt, D. and Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1023–1038.
  • Koonin, E. V. 2007. The Biological Big Bang model for the major transitions in evolution. Biology Direct, 2, 21.
  • Koonin, E. V. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 11, 209.
  • Koumandou, V. L., Wickstead, B., Ginger, M. L., van der Giezen, M., Dacks, J. B. and Field, M. C. 2013. Molecular paleontology and complexity in the last eukaryotic common ancestor. Critical Reviews in Biochemistry & Molecular Biology, 48, 373–396.
  • Lan, Z., Li, X., Chen, Z.-Q., Li, Q., Hofmann, A., Zhang, Y., Zhong, Y., Liu, Y., Tang, G., Ling, X. and Li, J. 2014. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Research, 251, 21–32.
  • Lane, N. 2011. Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct, 6, 35.
  • Lane, N. and Martin, W. 2010. The energetics of genome complexity. Nature, 467, 929–934.
  • Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. and Butterfield, N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7, 257–265.
  • Lester, L., Meade, A. and Pagel, M. 2006. The slow road to the eukaryotic genome. BioEssays, 28, 57–64.
  • Liu, Y., Steenkamp, E. T., Brinkmann, H., Forget, L., Philippe, H. and Lang, B. F. 2009. Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evolutionary Biology, 9, 272.
  • Margulis, L. 1981. Symbiosis in cell evolution: life and its environment on the early Earth. W. H. Freeman, San Francisco, 479 pp.
  • Marijuán, P. C., del Moral, R. and Navarro, J. 2013. On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization. Biosystems, 114, 8–24.
  • Martijn, J. and Ettema, T. J. G. 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochemical Society Transactions, 41, 451–457.
  • Martin, W. and Koonin, E. V. 2006. Introns and the origin of nucleus–cytosol compartmentalization. Nature, 440, 41–45.
  • Martin, W. and Müller, M. 1998. The hydrogen hypothesis for the first eukaryote. Nature, 392, 37–41.
  • Mast, F. D., Barlow, L. D., Rachubinski, R. A. and Dacks, J. B. 2014. Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends in Cell Biology, 24, 435–442.
  • McInerney, J. O., Martin, W. F., Koonin, E. V., Allen, J. F., Galperin, M. Y., Lane, N., Archibald, J. M. and Embley, T. M. 2011. Planctomycetes and eukaryotes: a case of analogy not homology. BioEssays, 33, 810–817.
  • Mendelson, C. V. and Schopf, J. W. 1992. Proterozoic and early Cambrian acritarchs. 219–232. In Schopf, J.W. and Klein, C. (eds). The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, 1348 pp.
  • Moreira, D. and López-García, P. 1998. Symbiosis between methanogenic Archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. Journal of Molecular Evolution, 47, 517–530.
  • Nagovitsin, K. E. 2009. Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints. Precambrian Research, 173, 137–145.
  • Nobles, D. R. and Brown, R. M. 2004. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose, 11, 437–448.
  • Pang, K., Tang, Q., Schiffbauer, J. D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z. and Xiao, S. 2013. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology, 11, 499–510.
  • Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. and Katz, L. A. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences, 108, 13624–13629.
  • Pawlowska, M. M., Butterfield, N. J. and Brocks, J. J. 2013. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology, 41, 103–106.
  • Poole, A. M. and Neumann, N. 2011. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Research in Microbiology, 162, 71–76.
  • Popper, Z. A., Michel, G., Hervé, C., Domozych, D. S., Willats, W. G. T., Tuohy, M. G., Kloareg, B. and Stengel, D. B. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annual Review of Plant Biology, 62, 567–590.
  • Porter, S. 2011. The rise of predators. Geology, 39, 607–608.
  • Porter, S. M., Meisterfeld, R. and Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77, 409–429.
  • Prasad, B., Uniyal, S. N. and Asher, R. 2005. Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist, 54, 13–60.
  • Rasmussen, B., Fletcher, I. R., Brocks, J. J. and Kilburn, M. R. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455, 1101–1104.
  • Ray, J. S. 2006. Age of the Vindhyan Supergroup: a review of recent findings. Journal of Earth System Science, 115, 149–160.
  • Rivera, M. C. and Lake, J. A. 2004. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature, 431, 152–155.
  • Rochette, N. C., Brochier-Armanet, C. and Gouy, M. 2014. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Molecular Biology and Evolution, 31, 832–845.
  • Roger, A. J. and Hug, L. A. 2006. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1039–1054.
  • Sansom, R. S., Gabbott, S. E. and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463, 797–800.
  • Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford, 296 pp.
  • Schopf, J. W. 1992. Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. 195–218. In Schopf, J.W. and Klein, C. (eds), The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, 1348 pp.
  • Schulz, H. N. and Schulz, H. D. 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307, 416–418.
  • Sharma, M. and Shukla, Y. 2009. Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Research, 173, 105–122.
  • Sherman, A. G., James, N. P. and Narbonne, G. M. 2002. Evidence for reversal of basin polarity during carbonate ramp development in the Mesoproterozoic Borden Basin, Baffin Island. Canadian Journal of Earth Sciences, 39, 519–538.
  • Shih, P. M. and Matzke, N. J. 2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proceedings of the National Academy of Sciences, 110, 12355–12360.
  • Su, W., Li, H., Xu, L., Jia, S., Geng, J., Zhou, H., Wang, Z. and Pu, H. 2012. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System: direct constraints from the LA-MCICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China. Geological Survey and Research, 35, 96–108.
  • Sugitani, K., Mimura, K., Nagaoka, T., Lepot, K. and Takeuchi, M. 2013. Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Research, 226, 59–74.
  • Summons, R. E., Brassell, S. C., Eglinton, G., Evans, E., Horodyski, R. J., Robinson, N. and Ward, D. M. 1988. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochimica et Cosmochimica Acta, 52, 2625–2637.
  • Szathmáry, E. and Smith, J. M. 1995. The major evolutionary transitions. Nature, 374, 227–232.
  • Turner, E. C. and Kamber, B. S. 2012. Arctic Bay Formation, Borden Basin, Nunavut (Canada): basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean. Precambrian Research, 208–211, 1–18.
  • Tziperman, E., Halevy, I., Johnston, D. T., Knoll, A. H. and Schrag, D. P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proceedings of the National Academy of Sciences, 108, 15091–15096.
  • Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. and Isozaki, Y. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440, 516–519.
  • Vaulot, D., Eikrem, W., Viprey, M. and Moreau, H. 2008. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiology Reviews, 32, 795–820.
  • Vermeij, G. J. 1977. The Mesozoic Marine Revolution: evidence from snails, predators and grazers. Paleobiology, 3, 245–258.
  • von Dohlen, C. D., Kohler, S., Alsop, S. T. and McManus, W. R. 2001. Mealybug β-proteobacterial endosymbionts contain -proteobacterial symbionts. Nature, 412, 433–436.
  • Waldbauer, J. R., Newman, D. K. and Summons, R. E. 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences, 108, 13409–13414.
  • Williams, T. A. 2014. Evolution: rooting the eukaryotic tree of life. Current Biology, 24, R151–R152.
  • Williams, T. A., Foster, P. G., Cox, C. J. and Embley, T. M. 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504, 231–236.
  • Yin, L. 1997. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Review of Palaeobotany & Palynology, 98, 15–25.
  • Yutin, N. and Koonin, E. V. 2012. Archaeal origin of tubulin. Biology Direct, 7, 10.
  • Yutin, N., Wolf, M. Y., Wolf, Y. I. and Koonin, E. V. 2009. The origins of phagocytosis and eukaryogenesis. Biology Direct, 4, 9.
  • Zhaxybayeva, O. and Gogarten, J. P. 2004. Cladogenesis, coalescence and the evolution of the three domains of life. Trends in Genetics, 20, 182–187.
PalAss Go! URL: http://go.palass.org/5w7 | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+