Skip to content Skip to navigation

Article: Early vertebrate evolution

Publication: Palaeontology
Volume: 57
Part: 5
Publication Date: September 2014
Page(s): 879 893
Author(s): <p>Philip C. J. Donoghue and Joseph N. Keating</p>
Addition Information

How to Cite

DONOGHUE, P.C.J, KEATING, J.N. 2014. Early vertebrate evolution. Palaeontology57, 5, 879–893. doi: 10.1111/pala.12125

Author Information

Publication History

  • Issue published online: 12 SEP 2014
  • Article first published online: 15 AUG 2014
  • Manuscript Accepted: 11 JUL 2014
  • Manuscript Received: 13 JUN 2014

Online Version Hosted By

Wiley Online Library (Free Access)
Get Article: Wiley Online Library [Free Access]

References

  • Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K. and Smith, M. P. 1986. The affinities of conodonts – new evidence from the Carboniferous of Edinburgh, Scotland. Lethaia, 19, 279–291.
  • Aldridge, R. J., Briggs, D. E. G., Smith, M. P., Clarkson, E. N. K. and Clark, N. D. L. 1993. The anatomy of conodonts. Philosophical Transactions of the Royal Society of London, Series B, 340, 405–421.
  • Anderson, P. S. L., Friedman, M., Brazeau, M. D. and Rayfield, E. J. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature, 476, 206–209.
  • Bardack, D. 1991. First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science, 254, 701–703.
  • Bardack, D. 1998. Relationship of living and fossil hagfishes. 3–14. In Jørgensen, J. M., Lomholt, J. P., Weber, R. E. and Malte, H. (eds). The biology of hagfishes. Chapman and Hall, London, 578 pp.
  • Bardack, D. and Richardson, E. S. Jr 1977. New agnathous fishes from the Pennsylvanian of Illinois. Fieldiana: Geology, 33, 489–510.
  • Bardack, D. and Zangerl, R. 1968. First fossil lamprey: a record from the Pennsylvanian of Illinois. Science, 162, 1265–1267.
  • Bardack, D. and Zangerl, R. 1971. Lampreys in the fossil record. 67–84. In Hardisty, M. W. and Potter, I. C. (eds). The biology of lampreys. Academic Press, London, 423 pp.
  • Benton, M. J., Donoghue, P. C. J. and Asher, R. J. 2009. Calibrating and constraining molecular clocks. 35–86. In Hedges, S. B. and Kumar, S. (eds). The timetree of life. Cambridge University Press, Cambridge, 576 pp.
  • Bergström, J. 1998. Conodonts, calcichordates and the origin of vertebrates. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe, 1, 81–92.
  • Blair, J. E. and Hedges, S. B. 2005. Molecular phylogeny and divergence times of deuterostome animals. Molecular Biology and Evolution, 22, 2275–2284.
  • Blieck, A. and Turner, S. 2003. Global Ordovician vertebrate biogeography. Palaeogeography Palaeoclimatology Palaeoecology, 195, 37–54.
  • Blieck, A., Turner, S., Burrow, C. J., Schultze, H. P., Rexroad, C. B., Bultynck, P. and Nowlan, G. S. 2010. Fossils, histology, and phylogeny: why conodonts are not vertebrates. Episodes, 33, 234–241.
  • Blom, H. 2012. New birkeniid anaspid from the Lower Devonian of Scotland and its phylogenetic implications. Palaeontology, 55, 641–652.
  • Blom, H. and Mrss, T. 2010. The interrelationships and evolutionary history of anaspids. 45–58. In Elliott, D. K., Maisey, J. G., Yu, X. and Miao, D. (eds). Morphology, phylogeny and paleobiogeography of fossil fishes. Pfeil, Munich, 472 pp.
  • Blom, H., Mrss, T. and Miller, C. G. 2002. Silurian and earliest Devonian birkeniid anaspids from the Northern Hemisphere. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92, 263–323.
  • Brazeau, M. D. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature, 457, 305–308.
  • Briggs, D. E. G., Clarkson, E. N. K. and Aldridge, R. J. 1983. The conodont animal. Lethaia, 16, 1–14.
  • Briggs, D. E. G., Erwin, D. H. and Collier, F. J. 1994. The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, DC, 238 pp.
  • Budd, G. E. and Jensen, S. 2000. A critical reappraisal of the fossil record of bilaterian phyla. Biological Reviews, 74, 253–295.
  • Chang, M.-M., Zhang, J. and Miao, D. 2006. A lamprey from the Cretaceous Jehol biota of China. Nature, 441, 972–974.
  • Chen, J.-Y., Dzik, J., Edgecombe, G. D., Ramsköld, L. and Zhou, G.-Q. 1995. A possible Early Cambrian chordate. Nature, 377, 720–722.
  • Chen, J.-Y., Huang, D. Y., Peng, Q. Q., Chi, H. M., Wang, X. Q. and Feng, M. 2003. The first tunicate from the Early Cambrian of South China. Proceedings of the National Academy of Sciences of the United States of America, 100, 8314–8318.
  • Conway Morris, S. 2008. A redescription of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada. Journal of Paleontology, 82, 424–430.
  • Conway Morris, S. and Caron, J.-B. 2012. Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biological Reviews, 87, 480–512.
  • Conway Morris, S. and Caron, J.-B. 2014. A primitive fish from the Cambrian of North America. Nature, published online June 11 2014, doi: 10.1038/nature13414.
  • Davis, S. P., Finarelli, J. A. and Coates, M. I. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature, 486, 247–250.
  • Dehal, P. and Boore, J. L. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biology, 3, e314.
  • Delsuc, F., Brinkmann, H., Chourrout, D. and Philippe, H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968.
  • Dewel, R. A. 2000. Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. Journal of Morphology, 243, 35–74.
  • Donoghue, P. C. J. 1998. Growth and patterning in the conodont skeleton. Philosophical Transactions of the Royal Society of London, Series B, 353, 633–666.
  • Donoghue, P. C. J. 2001. Microstructural variation in conodont enamel is a functional adaptation. Proceedings of the Royal Society of London, Series B, 268, 1691–1698.
  • Donoghue, P. C. J. and Aldridge, R. J. 2001. Origin of a mineralised skeleton. 85–105. In Ahlberg, P. E. (ed.). Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, 448 pp.
  • Donoghue, P. C. J. and Benton, M. J. 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology and Evolution, 22, 424–431.
  • Donoghue, P. C. J. and Purnell, M. A. 1999. Mammal-like occlusion in conodonts. Paleobiology, 25, 58–74.
  • Donoghue, P. C. J. and Purnell, M. A. 2005. Genome duplication, extinction and vertebrate evolution. Trends in Ecology and Evolution, 20, 312–319.
  • Donoghue, P. C. J. and Purnell, M. A. 2009. Distinguishing heat from light in debate over controversial fossils. BioEssays, 31, 178–189.
  • Donoghue, P. C. J. and Smith, M. P. 2001. The anatomy of Turinia pagei (Powrie) and the phylogenetic status of the Thelodonti. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92, 15–37.
  • Donoghue, P. C. J., Forey, P. L. and Aldridge, R. J. 2000. Conodont affinity and chordate phylogeny. Biological Reviews, 75, 191–251.
  • Donoghue, P. C. J., Smith, M. P. and Sansom, I. J. 2003. The origin and early evolution of chordates: molecular clocks and the fossil record. 190–223. In Donoghue, P. C. J. and Smith, M. P. (eds). Telling the evolutionary time: molecular clocks and the fossil record. CRC Press, London, 296 pp.
  • Donoghue, P. C. J., Graham, A. and Kelsh, R. N. 2008. The origin and evolution of the neural crest. BioEssays, 30, 530–541.
  • Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P. and Ahlberg, P. E. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature, 507, 500–503.
  • Dzik, J. 1986. Chordate affinities of the conodonts. 240–254. In Hoffman, A. and Nitecki, M. H. (eds). Problematic fossil taxa. Oxford Monographs on Geology and Geophysics 5, Oxford University Press, New York, 276 pp.
  • Dzik, J. 1995. Yunnanozoon and the ancestry of the vertebrates. Acta Palaeontologica Polonica, 40, 341–360.
  • Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334, 1091–1097.
  • Gabbott, S. E., Aldridge, R. J. and Theron, J. N. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature, 374, 800–803.
  • Gai, Z., Donoghue, P. C. J., Zhu, M., Janvier, P. and Stampanoni, M. 2011. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature, 476, 324–327.
  • Gans, C. and Northcutt, R. G. 1983. Neural crest and the origin of the vertebrates: a new head. Science, 220, 268–274.
  • Gess, R. W., Coates, M. I. and Rubidge, B. S. 2006. A lamprey from the Devonian period of South Africa. Nature, 443, 981–984.
  • Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G. (eds). 2012. The geological timescale 2012. Elsevier, Oxford, 1144 pp.
  • Gross, W. 1938. Der histologische aufbau der Anaspiden-schuppen. Norsk Geologisk Tidsskrift, 17, 191–195.
  • Gross, W. 1958. Anaspidenschuppen aus dem Ludlow des Ostseegebiets. Palontologische Zeitschrift, 32, 24–37.
  • Halstead, L. B. 1982. Evolutionary trends and the phylogeny of the Agnatha. 159–196. In Joysey, K. A. and Friday, A. E. (eds). Problems of phylogenetic reconstruction. Systematics Association Special Volume 21. Academic Press, London, 442 pp.
  • Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C. J. and Peterson, K. J. 2008. MicroRNAs and the advent of vertebrate morphological complexity. Proceedings of the National Academy of Sciences of the United States of America, 105, 2946–2950.
  • Heimberg, A. M., Cowper-Sal Lari, R., Sémon, M., Donoghue, P. C. J. and Peterson, K. J. 2010. MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 107, 19379–19383.
  • Holland, P. W. H. 1992. Homeobox genes in vertebrate evolution. BioEssays, 14, 267–273.
  • Hou, X. G., Aldridge, R. J., Siveter, D. J. and Feng, X. H. 2002. New evidence on the anatomy and phylogeny of the earliest vertebrates. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269, 1865–1869.
  • Hou, X. G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J. and Feng, X. H. 2004. The Cambrian fossils of Chengjiang, China: the flowering of animal life. Blackwell Science Ltd, London, 233 pp.
  • Inoue, J. G., Miya, M., Tsukamoto, K. and Nishida, M. 2003. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the ‘ancient fish’. Molecular Phylogenetics and Evolution, 26, 110–120.
  • Inoue, J. G., Miya, M., Lam, K., Tay, B.-H., Danks, J. A., Bell, J., Walker, T. I. and Venkatesh, B. 2010. Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Molecular Biology and Evolution, 27, 2576–2586.
  • Janvier, P. 1979. Cladism defended. Nature, 280, 542.
  • Janvier, P. 1990. La structure de l'exosquelette des Galeaspida (Vertebrata). Comptes Rendus de l'Academie des Sciences de Paris, 310, 655–659.
  • Janvier, P. 1996. Early Vertebrates. Oxford Monographs on Geology and Geophysics 33, Oxford University Press, Oxford, 393 pp.
  • Janvier, P. 2001. Ostracoderms and the shaping of the gnathostome characters. 172–186. In Ahlberg, P. E. (ed.). Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, 448 pp.
  • Janvier, P. and Lund, R. 1983. Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of lampreys. Journal of Vertebrate Paleontology, 2, 407–413.
  • Janvier, P., Lund, R. and Grogan, E. D. 2004. Further consideration of the earliest known lamprey Hardistiella montanensis Janvier and Lund, 1983, from the Carboniferous of the Bear Gulch, Montana, U.S.A. Journal of Vertebrate Paleontology, 24, 742–743.
  • Jones, D., Evans, A. R., Siu, K. K. W., Rayfield, E. J. and Donoghue, P. C. J. 2012a. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society of London, Series B: Biological Sciences, 279, 2849–2854.
  • Jones, D., Evans, A. R., Rayfield, E. J., Siu, K. K. W. and Donoghue, P. C. J. 2012b. Testing microstructural adaptation in the earliest dental tools. Biology Letters, 8, 952–955.
  • Kemp, A. 2002a. Hyaline tissue of thermally unaltered conodont elements and the enamel of vertebrates. Alcheringa, 26, 23–36.
  • Kemp, A. 2002b. Amino acid residues in conodont elements. Journal of Paleontology, 76, 518–528.
  • Kemp, A. and Nicoll, R. S. 1995. Protochordate affinities of conodonts. Courier Forschungsinstitut Senckenberg, 182, 235–245.
  • Kemp, A. and Nicoll, R. S. 1996. Histology and histochemistry of conodont elements. Modern Geology, 20, 287–302.
  • Kumar, S. and Hedges, S. B. 1998. A molecular timescale for vertebrate evolution. Nature, 392, 917–920.
  • Kuraku, S. and Kuratani, S. 2006. Timescale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoological Science, 23, 1053–1064.
  • Kuraku, S., Meyer, A. and Kuratani, S. 2009. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Molecular Biology and Evolution, 26, 47–59.
  • Liu, Y.-H., Zhu, M., Gai, Z.-K. and Lu, L.-W. in press. Subclass Galeaspida Tarlo, 1967. In Zhu, M. (ed.). Palaeovertebrata Sinica. Volume I Fishes. Fascicle 1 (Serial no. 1) Agnathans. Science Press, Beijing.
  • Lund, R. and Janvier, P. 1986. A second lamprey from the Lower Carboniferous (Namurian) of Bear Gulch, Montana (U.S.A.). Geobios, 19, 647–652.
  • Lundgren, M. and Blom, H. 2013. Phylogenetic relationships of the cyathaspidids (Heterostraci). GFF, 135, 74–84.
  • Luo, H., Hu, S. and Chen, L. 2001. New early Cambrian chordates from Haikou, Kunming. Acta Geologica Sinica (English Edition), 75, 345–348.
  • Maisey, J. G. 1986. Head and tails: a chordate phylogeny. Cladistics, 2, 201–256.
  • Mallatt, J. and Chen, J.-Y. 2003. Fossil sister group of craniates: predicted and found. Journal of Morphology, 258, 1–31.
  • Mallatt, J., Chen, J.-Y. and Holland, N. D. 2003. Comment on ‘A new species of yunnanozoan with implications for deuterostome evolution’. Science, 300 (5624), 1372.
  • Martínez-Pérez, C., Rayfield, E. J., Purnell, M. A. and Donoghue, P. C. J. 2014. Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology, published online 26 February 2014, doi: 10.1111/pala.12102.
  • Moulton, V. and Huber, K. T. 2009. Split networks. A tool for exploring complex evolutionary relationships in molecular data. 631–653. In Lemey, P. and Salemi, M. (eds). The phylogenetic handbook. Cambridge University Press, Cambridge, 750 pp.
  • Müller, K. J. 1981. Zoological affinities. 78–82. In Robison, R. A. (ed.). Treatise on invertebrate paleontology, Part W, Miscellanea, Supplement 2, Conodonta. Geological Society of America, Boulder, CO, and University of Kansas Press, Lawrence, KS, 230 pp.
  • Murdock, D. J., Sansom, I. J. and Donoghue, P. C. 2013a. Cutting the first ‘teeth’: a new approach to functional analysis of conodont elements. Proceedings of the Royal Society of London, Series B, 280, 20131524.
  • Murdock, D. J., Dong, X.-P., Repetski, J. E., Marone, F., Stampanoni, M. and Donoghue, P. C. J. 2013b. The origin of conodonts and of vertebrate mineralized skeletons. Nature, 502, 546–549.
  • Nikitina, N., Sauka-Spengler, T. and Bronner-Fraser, M. 2008. Dissecting early regulatory relationships in the lamprey neural crest gene network. Proceedings of the National Academy of Sciences of the United States of America, 105, 20083–20088.
  • Nohara, M., Nishida, M., Manthacitra, V. and Nishikawa, T. 2004. Ancient phylogenetic separation between Pacific and Atlantic cephalochordates as revealed by mitochondrial genome analysis. Zoological Science, 21, 203–210.
  • Northcutt, R. G. and Gans, C. 1983. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Quarterly Review of Biology, 58, 1–28.
  • Ohno, M. 1970. Evolution by gene duplication. Springer-Verlag, Heidelberg, 160 pp.
  • Ota, K. G., Fujimoto, S., Oisi, Y. and Kuratani, S. 2011. Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nature Communications, 2, 373.
  • Pernègre, V. N. and Elliott, D. K. 2008. Phylogeny of the Pteraspidiformes (Heterostraci), Silurian–Devonian jawless vertebrates. Zoologica Scripta, 37, 391–403.
  • Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., Wallberg, A., Peterson, K. J. and Telford, M. J. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470, 255–258.
  • Poplin, C., Sotty, D. and Janvier, P. 2001. Un Myxinoîde (Craniata, Hypotreti) dans le Konservat-Lagersttte Carbonifère supérieur de Montceau-les-Mines (Allier, France). Comptes Rendus de l'Academie des Sciences, Paris, Sciences de la Terre et des Planètes, 332, 345–350.
  • Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature, 374, 798–800.
  • Purnell, M. A. 2001. Scenarios, selection and the ecology of early vertebrates. 187–208. In Ahlberg, P. E. (ed.). Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, 448 pp.
  • Purnell, M. A. 2002. Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution. Proceedings of the Royal Society of London, Series B, 269, 83–88.
  • Purnell, M. A. and Jones, D. O. 2012. Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses. Paleobiology, 38, 605–626.
  • Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology, 60, 466–481.
  • Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L. and Rasnitsyn, A. P. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology, 61, 973–999.
  • Sansom, I. J., Smith, M. P., Armstrong, H. A. and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science, 256, 1308–1311.
  • Sansom, I. J., Smith, M. P. and Smith, M. M. 1994. Dentine in conodonts. Nature, 368, 591.
  • Sansom, I. J., Smith, M. M. and Smith, M. P. 2001. The Ordovician radiation of vertebrates. 156–171. In Ahlberg, P. E. (ed.). Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, 448 pp.
  • Sansom, R. S. 2009. Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). Journal of Systematic Palaeontology, 7, 95–115.
  • Sansom, R. S., Gabbott, S. E. and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463, 797–800.
  • Schultze, H.-P. 1996. Conodont histology: an indicator of vertebrate relationship? Modern Geology, 20, 275–286.
  • Shiino, Y., Kuwazuru, O. and Yoshikawa, N. 2009. Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): generating mechanism of passive feeding flows. Journal of Theoretical Biology, 259, 132–141.
  • Shu, D.-G. 2003. A paleontological perspective of vertebrate origin. Chinese Science Bulletin, 48, 725–735.
  • Shu, D.-G., Conway Morris, S. and Zhang, X.-L. 1996a. A Pikaia-like chordate from the Lower Cambrian of China. Nature, 384, 157–158.
  • Shu, D.-G., Zhang, X. and Chen, L. 1996b. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature, 380, 428–430.
  • Shu, D.-G., Luo, H.-L., Conway Morris, S., Zhang, X.-L., Hu, S.-X., Chen, L., Han, J., Zhu, M., Li, Y. and Chen, L.-Z. 1999. Lower Cambrian vertebrates from south China. Nature, 402, 42–46.
  • Shu, D.-G., Chen, L., Han, J. and Zhang, X.-L. 2001a. An early Cambrian tunicate from China. Nature, 411, 472–473.
  • Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang, X.-L., Zhang, Z.-F., Liu, H.-Q., Li, Y. and Liu, J.-N. 2001b. Primitive deuterostomes from the Chengjiang Lagersttte (Lower Cambrian, China). Nature, 414, 419–424.
  • Shu, D.-G., Luo, H.-L., Han, J., Zhang, Z.-F., Yasui, K., Janvier, P., Chen, L., Zhang, X.-L., Liu, J.-N. and Liu, H.-Q. 2003. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 421, 526–529.
  • Shu, D.-G., Conway Morris, S., Han, J., Zhang, Z.-F. and Liu, J.-N. 2004. Ancestral echinoderms from the Chengjiang deposits of China. Nature, 430, 422–428.
  • Smith, M. P., Donoghue, P. C. J. and Sansom, I. J. 2002. The spatial and temporal diversification of Early Palaeozoic vertebrates. 69–83. In Crame, J. A. and Owen, A. W. (eds). Palaeobiogeography and biodiversity change: the Ordovician and Mesozoic–Cenozoic radiations. Geological Society, London, Special Publication, 194, 216 pp.
  • Smith, J. J., Kuraku, S., Holt, C., Sauka-Spengler, T., Jiang, N., Campbell, M. S., Yandell, M. D., Manousaki, T., Meyer, A., Bloom, O. E., Morgan, J. R., Buxbaum, J. D., Sachidanandam, R., Sims, C., Garruss, A. S., Cook, M., Krumlauf, R., Wiedemann, L. M., Sower, S. A., Decatur, W. A., Hall, J. A., Amemiya, C. T., Saha, N. R., Buckley, K. M., Rast, J. P., Das, S., Hirano, M., McCurley, N., Guo, P., Rohner, N., Tabin, C. J., Piccinelli, P., Elgar, G., Ruffier, M., Aken, B. L., Searle, S. M. J., Muffato, M., Pignatelli, M., Herrero, J., Jones, M., Brown, C. T., Chung-Davidson, Y.-W., Nanlohy, K. G., Libants, S. V., Yeh, C.-Y., McCauley, D. W., Langeland, J. A., Pancer, Z., Fritzsch, B., de Jong, P. J., Zhu, B., Fulton, L. L., Theising, B., Flicek, P., Bronner, M. E., Warren, W. C., Clifton, S. W., Wilson, R. K. and Li, W. 2013. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 45, 415–421.
  • Swalla, B. J. and Smith, A. B. 2008. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 363, 1557–1568.
  • Turner, S., Burrow, C. J., Schultze, H. P., Blieck, A., Reif, W. E., Rexroad, C. B., Bultynck, P. and Nowlan, G. S. 2010. False teeth: conodont–vertebrate phylogenetic relationships revisited. Geodiversitas, 32, 545–594.
  • Wagner, G. P., Amemiya, C. and Ruddle, F. 2003. Hox cluster duplications and the opportunity for evolutionary novelties. Proceedings of the National Academy of Sciences of the United States of America, 100, 14603–14606.
  • Wang, N. Z., Donoghue, P. C. J., Smith, M. M. and Sansom, I. J. 2005. Histology of the galeaspid dermoskeleton and endoskeleton, and the origin and early evolution of the vertebrate cranial endoskeleton. Journal of Vertebrate Paleontology, 25, 745–756.
  • Whitear, M. 1986. Epidermis. 8–38. In Bereiter-Hahn, J., Matoltsy, A. G. and Richards, K. S. (eds). Biology of the integument. 2. Vertebrates. Springer-Verlag, Berlin, 855 pp.
  • Young, G. C. 1991. The first armoured agnathan vertebrates from the Devonian of Australia. 67–85. In Chang, M. M., Liu, Y. H. and Zhang, G. R. (eds). Early vertebrates and related problems in evolutionary biology. Science Press, Beijing, 514 pp.
  • Zhu, M. and Gai, Z.-K. 2006. Phylogenetic relationships of galeaspids (Agnatha). Vertebrata PalAsiatica, 44, 1–27.
  • Zhu, M. and Janvier, P. 1998. The histological structure of the endoskeleton in galeaspids (Galeaspida, Vertebrata). Journal of Vertebrate Paleontology, 18, 650–654.
  • Zhu, M., Yu, X., Ahlberg, P. E., Choo, B., Lu, J., Qiao, T., Qu, Q., Zhao, W., Jia, L., Blom, H. and Zhu, Y. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 502, 188–193.
PalAss Go! URL: http://go.palass.org/5rj | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+