THE MICROSTRUCTURE OF TOOTH ENAMEL
IN MULTITUBERCULATE MAMMALS

by G. FOSSE, Z. KIELAN-JAWOROWSKA and S. G. SKAALE

ABSTRACT. The enamel microstructure of single teeth and teeth in situ in whole jaws of late Jurassic, late
Cretaceous, and Palaeocene multituberculates belonging to the Plagiaulacoidea, Taeniolabidoidea, Ptilo-
dontoidea, and Meniscoessus (Cimolomyidae, suborder indet.) is examined by incident light microscopy,
scanning electron microscopy (SEM), and polarized light microscopy. For comparison one docodont tooth
and some single late Cretaceous and Recent eutherian teeth are included. The enamel of the Plagiaulacoidea
like that of the docodont tooth is not prismatic, but consists of radially arranged, closely packed 5 ym thick
columns of crystals, which diverge from the central axis of each column towards the outer enamel surface.
The Asian as well as the North American Taeniolabidoidea have gigantoprismatic enamel, the numerical
density of prisms per unit area being four to five times lower than in the Ptilodontoidea and Eutheria. In most
taeniolabidoid jaws the prism density is somewhat higher in the molars than in the incisors. The oldest
gigantoprismatic enamel was found in some undescribed multituberculate teeth from the early Cretaceous of
Asia. As Meniscoessus (suborder indet.) has gigantoprismatic enamel, it is suggested that this feature may be
useful in establishing the taxonomic position of some multituberculate groups.

THIs paper examines the tooth enamel of multituberculate mammals from the upper Jurassic,
Kimmeridgian to the late Palaeocene, in order to discover differences in enamel microstructure
among the suborders Plagiaulacoidea, Ptilodontoidea, and Taeniolabidoidea, to elucidate their
relationships.

Moss (1969) found that multituberculate enamel was a non-prismatic, continuous structure, and
that it contained tubules which followed a zigzag course. Fosse ef al. (1973) confirmed the presence
of these zigzag tubules but challenged Moss’ view on the non-prismatic enamel structure on the
basis of six unidentified multituberculate teeth from the late Cretaceous in which the enamel was
discontinuous and prismatic, the prisms being extremely large in comparison with those of other
mammals. Subsequently Fosse et al. (1978) investigated the teeth of four identified multituberculate
species, Catopsalis joyneri and Stygimys kuszmauli (Taeniolabidoidea) and Mesodma thompsoni and
M. formosa (Ptilodontoidea). The number of prisms per mm? ranged from 3650 to 5860 in the
members of the Taeniolabidoidea and from 26 600 to 27200 in the Ptilodontoidea. The
taeniolabidoid prism density was the lowest observed in any group of mammals.

Sahni (1979) studied the enamel microstructure in several late Cretaceous North American
Ptilodontoidea and Taeniolabidoidea, as well as Eutheria (from the Hell Creek Formation of
Montana, Sloan and Van Valen (1965)) and found large prisms in all the multituberculate genera.
According to Sahni the prism density per mm? in Mesodma and Meniscoessus (suborder indet.—
see Hahn and Hahn 1983) was 9000 and 7400 respectively, while in Catopsalis and Stygimys it was
8700 and 4500. The data for Mesodma differ considerably from those obtained by Fosse et al.
(1978). Using the scales given on the Mesodma micrographs in Sahni’s paper we calculated a mean
prism density of 21 400 per mm?.

In view of the differences between the results obtained by Fosse et al. (1978), by Sahni (1979,
Table 1), and by us on Sahni’s micrographs, concerning Mesodma, we decided to examine once
more isolated teeth of Mesodma sp. and to compare them with a molar of Meniscoessus sp.
(Cimolomyidae, suborder indet.), all from the late Cretaceous of North America, and with various
taeniolabidoid teeth from the late Cretaceous of Asia (Kielan-Jaworowska 1970, 1974a), the Late
Palaeocene of Asia (Matthew and Granger 1925), and the late Cretaceous of North America (Sloan

[Palaeontology, Vol. 28, Part 3, 1985, pp. 435-449, pls. 48-50.]



436 PALAEONTOLOGY, VOLUME 28

and Van Valen 1965). All the North American late Cretaceous material comes from the Hell Creek
Formation of Montana (Clemens et al. 1979). The late Cretaceous Asian material which forms the
bulk of the material comes from the Djadokhta and Barun Goyot formations, or the stratigraphic
equivalent of the latter: the red beds of Khermeen Tsav. We tentatively accept, after Gradzinski et
al. (1977) that the Djadokhta Formation belongs to the upper Santonian and/or lower Campanian
Stage, while the Barun Goyot Formation (and the red beds of Khermeen Tsav) belong to the middle
Campanian Stage.

We also examined the enamel microstructure of isolated teeth from the early Cretaceous of Asia,
which are at present being studied by Kielan-Jaworowska, Dashzeveg, and Trofimov. Some of these
teeth (genus Arginbaatar) were assigned to the Taeniolabididae by Trofimov (1980), while Hahn
and Hahn (1983) erected the family Arginbaataridae within the Plagiaulacoidea. Consequently at
present we assign all the early Cretaceous Mongolian multituberculates to a suborder indet.

The earliest multituberculate teeth examined by us belong to the suborder Plagiaulacoidea and
come from the late Jurassic, Kimmeridgian, of Portugal (Hahn 1969, 1971, 1978). From the same
location we also included an unidentified docodont tooth for comparison, as well as teeth of late
Cretaceous and Recent eutherian mammals.

ABBREVIATIONS

GI Institute of Geology, Academy of Sciences of the Mongolian People’s Republic, Ulan Bator.
TAUB Institute of Anatomy, University of Bergen, Bergen.

PIFU Palaeontologishes Institut, Freie Universitdt, Berlin.

UM  University of Minnesota, Minneapolis, U.S.A.

ZPAL Institute of Palacobiology, Polish Academy of Sciences, Warsaw.

I incisor dp deciduous premolar P permanent premolar M  molar.

MATERIAL

Docodonta
Docodontidae
gen. et sp. indet., Kimmeridgian, Portugal, Leiria, Guimarota: PIFU no number (a molar)
Multituberculata
Plagiaulacoidea
Family, gen. et sp. indet., Kimmeridgian, Portugal Leiria, Guimarota: PIFU no number (a molar)
Paulchoffatidae (all from the Kimmeridgian of Portugal, Leiria, Guimarota):
Paulchoffatia sp.: PIFU VJ 270-155 (dp?); PIFU VJ 272-155 (P); PIFU V] 273-155 (P?)
Kuehneodon sp.: PIFU V] 303-155 (P5); PIFU VJ 308-155 (P%)
Suborder indet. (all from the ?Aptian or Albian Guchin beds of Mongolia, Guchin Us):
Arginbaataridae
Arginbaatar dimitrievae Trofimov: GI PST 10/11 (P,); GI PST 10/13(P,)
Family, gen. et sp. indet.: GI PST 10/29 (I'); GI PST 10/23 (P,)
Taeniolabidoidea
Eucosmodontidae
(Chulsanbaatar, Nemegtbaatar, and Kryptobaatar are from the upper Cretaceous of Asia, Gobi Desert,
Stygimys from the upper Cretaceous, Hell Creek Formation, North America, Montana, Bug Creek):
Chulsanbaatar vulgaris Kielan-Jaworowska, Barun Goyot Formation, Khulsan: ZPAL MgM-1/62 (1,,
M,); ZPAL MgM-1/157 (I, P,, M,); Barun Goyot Formation, Nemegt: ZPAL MgM-I/111 (I,);
red beds of Khermeen Tsav, Khermeen Tsav II: ZPAL MgM-I/108 (I,); ZPAL MgM-1/109 (I,, P,)
Nemegtbaatar gobiensis Kielan-Jaworowska, red beds of Khermen Tsav, Khermen Tsav II: ZPAL
MgM-1/81 (I,, M,); ZPAL MgM-1/82 (1,, P,, M,)
Kryptobaatar dashzevegi Kielan-Jaworowska, Djadokhta Formation, Bayn Dzak: ZPAL MgM-1/7
(P.); ZPAL MgM-1/9) (P4, M,); ZPAL MgM-1/37 (I, M,); ZPAL MgM-1/53 (I,, P4, My)
Stygimys kuszmauli Sloan and Van Valen, Hell Creek Formation, Bug Creek: UM no. 5 (I;, M,)
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Taeniolabididae (all from Asia, Gobi Desert):
Kamptobaatar and Catopsalis are from the upper Cretaceous, Prionessus from the Upper Palaeocene
Kamptobaatar kuczynskii Kielan-Jaworowska, Djadokhta Formation, Bayn Dzak: ZPAL MgM-I/38
(Pa)
Catopsalis catopsaloides (Kielan-Jaworowska), red beds of Khermeen Tsav, Khermeen Tsav II: ZPAL
MgM-1/78 (I,, M;); ZPAL MgM-I/80 (M,)
Prionessus lucifer Matthew and Granger, Naran Bulak: ZPAL MgM-I1/67 (I, M;, M,)
Ptilodontoidea
Neoplagiaulacidae (all from the upper Cretaceous Hell Creek Formation, North America, Montana, Bug
Creek):
Mesodma thompsoni Clemens: UM no. 3 (P,)
Mesodma sp.: ZPAL MK-1/7 (P,); ZPAL MK-1/8 (P,); ZPAL MK-I/3 (M!); ZPAL MK-I/6 (M?)
Suborder indet.
Cimolomyidae, Bug Creek, Montana, Hell Creek formation:
Meniscoessus sp.: ZPAL MK-I/9 (M,)
Eutheria
Proteutheria
Kennalestidae, Djadokhta Formation, Gobi Desert, Bayn Dzak:
Kennalestes gobiensis Kielan-Jaworowska: ZPAL MgM-I/3 (P3)
Rodentia
Muridae, Recent, Europe:
Rattus norvegicus (Berkenhout): IAUB no number (I,, M,)
Primates
Hominidae, Recent, Europe:
Homo sapiens L.: IAUB no number (P2).

METHODS

The Asian multituberculate material investigated in Warsaw consisted of whole mandibles with teeth in situ.
The right or left mandible was positioned in plasticine on a microscope slide under a dissection microscope in
such a way that a selected region of enamel on the tooth to be studied was the highest point of the whole
dentition. This region was then carefully planed horizontally by hand using 0/2 and then 0/4 grit emery paper
(Buehler Ltd., Evanston, Ill., U.S.A.), each grade having been glued and trimmed to either of the two long,
narrow sides of a 10 x 2 x 0-3 cm rectangular, planed wood stick. The horizontal, tiny but relatively flat enamel
surface, less than 1 mm in diameter formed in this way was then etched with a very small amount of 0-37 N
HNO; applied by a fine-pointed brush. The etching was interupted after 5 sec with plain water, using a similar
brush. Next, to micrograph the etched surface, the microscope slide with the specimen still in the original
position on it was transferred to a Leitz Laborlux microscope equipped with camera, an Ultropak incident
light condensor and a U-O-11 objective. A Leitz microscale with 10 ym divisions was micrographed with the
same magnification.

At TAUB the films of the etched surfaces with cross-cut enamel prisms were copied on 23 x 30 cm film
sheets with a standard magnification.

The smallest unit that describes the number of cross-sectioned prisms per mm? (numerical prism density) is
a triangle consisting of central distances between three adjacent prisms. Determining the prism density in the
enamels consisted of measuring the distances between centres of adjacent prisms in several such triangular
units within each micrographed enamel area (Fosse, 1968a).

Table 1 presents prism densities (a), mean central distances between adjacent prisms (D), and the new
parameter A which signifies the theoretical mean cross-sectional area in um? of the enamel producing end of
the ameloblasts (Fosse 1968d; Fosse et al. 1973, et al. 1978). The prism density values presented were calculated
from incident light micrographs of superficially planed and etched natural outer enamel surfaces which are
nearly planoparallel with an original layer of ameloblasts (Fosse ef al. 1973). As it is still generally believed
that each prism rod is produced by one ameloblast (Fosse et al. 1978), the number of prisms per mm? in such
planes should reflect the number of original enamel producing ameloblasts per mm? in that plane, irrespective
of its angle with the prism rods underneath (Fosse 1968c).

Two multituberculate lower jaws, Chulsanbaatar vulgaris Kielan-Jaworowska, ZPAL MgM-1/62, and Kryp-
tobaatar dashzevegi Kielan-Jaworowska, ZPAL MgM-I/53, as well as docodont and plagiaulacoid single teeth
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(gen. et sp. indet.), and five plagiaulacoid single teeth determined at generic level, all from the Kimmeridgian,
Leiria, Guimarota, Portugal, were sectioned by a wire string saw (Fosse et al. 1974) to obtain cut surfaces or
thin sections for transmitted light microscopy. For the SEM micrographs a Jeol T-200 instrument was used.
The specimens were covered by gold-palladium before SEM micrography. A Leitz Ortholux Pol microscope
was used for transmitted light micrographs of thin tooth sections. :

RESULTS

In the material in Warsaw, clusters of prisms were usually quickly recognized in the planed and
etched enamel surfaces. Text-fig. 1a represents P, of K. dashzevegi Kielan-Jaworowska, ZPAL
MgM-I/7. With the same magnification text-fig. 1, ¢, and d respectively show the prism densities
in Mesodma sp. (Ps), Stygimys kuszmauli (1,), and Meniscoessus sp. (M) enamels, all three from
the late Cretaceous, Lancian (Maastrichtian), North America, Montana, Bug Creek. In incident
light planed and etched enamel surfaces of Kimmeridgian plagiaulacoid and docodont teeth showed
regularly packed structures in a pattern resembling cross-cut prism rods, (text-fig. le, f). Their
numerical density and mean interproximate central distance were of a magnitude between those of
the eutherians: late Cretaceous Kennalestes gobiensis and Recent Rattus norvegicus, (text-fig. 1g;
Table 1). Human enamel had considerably larger prisms than R. norvegicus. The prism density near
the cusp on the outer surface of a human premolar was about the same as that of Mesodma sp.,

e f g h

TEXT-FIG. 1. Incident light micrographs of planed and etched surfaces of various enamels reproduced
with the same magnification, x 250. a represents the enamel surface of a tooth micrographed in situ,
c and f represent the cut and etched enamels of sectioned teeth, all the others represent superficially
planed and etched outer enamel surfaces of teeth embedded in plastic blocks. a, Kryptobaatar
dashzevegi Kielan-Jaworowska, ZPAL MgM-1/7, P,, occlusal edge above. b, Mesodma sp., ZPAL
MK-I/8, P,, occlusal edge above. c, Stygimys kuszmauli Sloan and Van Valen, UM no. 5, 1,, showing
longitudinal section through medial enamel facet seen in the lingual direction, dentine below.
d, Meniscoessus sp., ZPAL MK-1/9, M, occlusal surface above. e, Paulchoffatiasp., PIFU VJ 273-155,
P!, showing prism-like pattern of structures without distinct borders, occlusal surface to right.
f, docodont molar (gen. et sp. indet.), PIFU no number, obliquely cut through one of the cusps,
showing prism-like pattern, montage. g, Rattus norvegicus (Berkenhout), IAUB no number, M,,
occlusal surface above. h, Homo sapiens L., IAUB no number, P2, occlusal surface above.
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TABLE 1. The number of prisms per mm? (a), the mean central distance in microns between adjacent prisms

(D), and the theoretical mean cross-sectional area in um? of the enamel producing cells (A) (see Methods) in

the enamel of some specimens of European, Asian, and North American multituberculates from different

ages, of one undetermined docodont molar, one Cretageous, and two recent eutherian species. The ZPAL

specimens were represented by whole jaws from which the enamel parameters of more than one tooth were
usually available, see Material.

Species/specimen a D A
Docodont, gen. & sp. indet.
PIFU no number 34514 578 289 M
Paulchoffatia sp.
PIFU VJ 273-155 43 080 517 232 P!
PIFU VJ 272-155 59 987 438 16-6 |
Kuehneodon sp.
PIFU VJ 303-155 50 983 475 19-6 ps
Arginbaatar dimitrievae Trofimov
GI PST 10/11 7123 12-73 140-3 P,
GI PST 10/13 5426 14-58 184-2 P,
Multituberculata subord. fam. gen. and sp. indet.
GI PST 10/29 4891 15-36 204-4 It
GI PST 10/23 11 365 10-07 879 P,
Chulsanbaatar vulgaris Kielan-Jaworowska
ZPAL MgM-1/62 5812 14-09 172-0 It
10 001 10-74 999 M,
ZPAL MgM-I/157 4960 15-25 201-5 I,
5734 14-18 174-3 P,
11623 9-96 86-0 M,
ZPAL MgM-I/111 6519 13-30 153-4 I,
- ZPAL MgM-1/108 7219 12-64 138-5 I,
ZPAL MgM-I/109 6258 13-58 159-7 I,
9520 11-01 105- P,
Nemegtbaatar gobiensis Kielan-Jaworowska
ZPAL MgM-1/81 5399 14-62 185-1 I,
12133 9-75 824 M,
ZPAL MgM-1/82 5435 14-57 1839 I,
4241 16-49 2357 P,
8271 11-81 1209 M,
Kryptobaatar daszevegi Kielan-Jaworowska
ZPAL MgM-1/7 6314 13-52 158-3 P,
ZPAL MgM-1/9 3379 18-48 2959 I
- 6349 13-48 157-4 P,
ZPAL MgM-1/10 4464 16-08 2239 I,
5271 14-79 189-6 P,
ZPAL MgM-I/21 3705 17-65 269-8 I
4908 15-33 203-7 P,
) 3980 17-03 2512 M,
ZPAL MgM-1/37 4292 16-40 2329 I,
3753 17-53 266-4 M,
ZPAL MgM-1/53 3415 18-38 2927 1,
5812 14-09 172-0 P,
6039 13-82 165-5 M,

Stygimys kuszmauli Sloan and Van Valen .

UMno. 5 3860 17-29 2590 I,
Kamptobaatar kuczynskii Kielan-Jaworowska

ZPAL MgM-1/38 6776 13-05 147-5 P,
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TABLE 1 (cont.)

Species/specimen ) a D A
Catopsalis catopsaloides (Kielan-Jaworowska)
ZPAL MgM-1/78 4740 15-60 2109 I,
6650 13-17 150-3 M,
ZPAL MgM-1/80 6063 13-79 164-9 M,
Prionessus lucifer Matthew and Granger
ZPAL MgM-11/67 6440 13-38 155-2 I,
5776 14-13 1731 M,
6138 13-71 1629 M,
Mesodma sp.
ZPAL MK-1/7 28 627 6-35 349 P,
ZPAL MK-I/8 26 321 6:62 379 P,
ZPAL MK-]/3 26 694 6-58 375 M?
ZPAL MK-I/6 21557 7-32 46-4 Mt
Meniscoessus sp.
ZPAL MK-1/9 4088 16-80 244-5 M,
Kennalestes gobiensis Kielan-Jaworowska
ZPAL MgM-1/3 31 599 6-04 31-6 p3
Rattus norvegicus (Berkenhout)
IAUB no number 65 703 419 152 L
67 095 4-14 149 M,

Homo sapiens L.
IAUB no number 25335 675 39-5 P2

(text-fig. 1, i; Table 1). In most ZPAL taeniolabidoid jaws with more than one tooth micrographed,
the prism density of the incisor was lower than that of P4 or My, see Table 1. The higher density in
the molars apparently is caused not so much by smaller prisms as by less interprismatic enamel
(Pl. 48, figs. 1 and 2). The great difference between the microstructure of taeniolabidoid and Mesodma
enamels is demonstrated in Plate 48, figs. 1-4, where it is also seen that the crystal structure of the
Kryptobaatar enamels was coarser than that of the Mesodma enamels. Near the outer surface of
human enamel there is very little interprismatic substance (P1. 48, fig. 5). The human prism diameters

EXPLANATION OF PLATE 48

Figs. 1-5. SEM micrographs of superficially planed and etched outer enamel surfaces reproduced with the
same magnification, x 2900, documented by the automatically recorded scale divisions of 10 ym having
been retained in the micrographs. 1, Kryptobaatar dashzevegi Kielan-Jaworowska, ZPAL MgM-I/53, I,
showing that the prisms are widely separated by interprismatic enamel consisting of crystals being normal
to the surface and that the crystals of the prism cores are obliquely orientated relative to the surface and .
inclined in an incisal direction above. 2, M, from the same dentition as I, in fig. 1, showing that the spatial
arrangement of the crystals in the prisms and interprismatic enamel is less distinct and that the prisms are
nearly of the same size but more closely packed than in I,. 3, Mesodma sp., ZPAL MK-I/8, P,, showing
that the prisms are smaller and their numerical density per unit area considerably lower than in Kryptobaatar
enamel, also that the crystals are more delicate and densely packed. In the interprismatic enamel the crystals
are normal to the surface, while those of the prism cores are inclined in a cuspal direction to the left.
4, Mesodma sp., ZPAL MK-I/3, M, not belonging to the same individual as P, in fig. 3, but showing similar
prism size, numerical density of prisms, and crystal orientation. Cuspal direction is to the left. In the upper
half are some openings of enamel tubules. 5, Homo sapiens L., IAUB no number, P2, showing that prisms
are nearly as large as in Kryptobaatar enamel (fig. 1), but that their numerical density approximates that of
the Mesodma enamels (figs. 3 and 4). Cuspal direction is to the right.
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are about as large as those of the Kryptobaatar (Pl. 48, figs. 1 and 2) and Chulsanbaatar enamels
(P1. 49, fig. 3), whereas the distances between centres of adjacent prisms equal those of the Mesodma
enamels (Pl. 48, figs. 3 and 4; Table 1). Thus there is no interdependence between prism diameters
and number of prisms per unit area.

Longitudinal and transverse sections of taeniolabidoid incisors showed cross-cut prisms; in longi-
tudinal sections when they passed through the medial enamel facets where the prism rods were
inclined in a dorsomedial (mesiolingual) direction in a transversal plane relative to the incisors, in
transversal sections in the ventrolateral facets where the prism rods were inclined in an anterior
(incisal) direction in a sagittal plane relative to the tooth. Regardless of the orientation of the enamel
surfaces represented by Plate 48, figs. 1-4 and Plate 49, figs. 1 and 3, they all demonstrate that the
crystals in the interprismatic enamel are orientated with their long axis nearly normal to the natural
outer enamel surface. The crystals of the prism cores are parallel with the prism rods, and the apices
of the arcades are pointing in the direction of the acute angle between prism rods and the dentine
enamel junctional surface.

In the SEM discrete enamel prisms in the Kimmeridgian enamels could not be discerned. Plate
49, figs. 2 and 5 show plagiaulacoid and docodont enamels at the same magnification. A certain
regular pattern in the crystal orientation may be observed. This pattern seemed to consist of 5 yum
thick, closely packed columns of crystals, the latter diverging from the central axis of each column
towards the external enamel surface. In Table 1 are given the values for three plagiaulacoid teeth
and one docodont molar from the Kimmeridgian, Portugal, based on measurements in incident
light micrographs.

Longitudinal sections, about 80 um thick, were prepared from three plagiaulacoid teeth of which
two were determined on the generic level, and one docodont molar (gen. et sp. indet.) from the
Kimmeridgian. In the microscope one of the plagiaulacoid enamels (gen. et sp. indet.) showed large
black spots along lines that might correspond to the course of growth lines (striae of Retzius,
Pl. 50, fig. 1). In polarized transmitted light with crossed polars and the dentine enamel junction at

EXPLANATION OF PLATE 49

Figs. 1-5. SEM micrographs of various multituberculate enamels reproduced with the same magnification,
x 2900, documented by the automatically recorded scale divisions of 10 um having been retained along the
right margins of the micrographs. Figs. 1, 2, and 3 represent sectioned and etched enamel surfaces, figs. 4
and 5 superficially planed and etched outer enamel surfaces. 1, Stygimys kuszmauli Sloan and Van Valen,
UM no. 5, I, enlargement of the same enamel surface as figured in text-fig. 1c, but rotated 90°, dentine
enamel border at right. The prisms are large and widely separated by interprismatic enamel where the
crystals are orientated with their long axes in the figured plane, from left to right, e.g. perpendicularly to
~the outer enamel surface, while the crystals of the prisms are normal to the figured surface. Towards the
dentine at right the borders of two prisms consist of an amorphous material. 2, Paulchoffatia sp., PIFU VJ
270-155, dp!, showing oblique section through cusp where the enamel consists of crystals without pre-
ferential orientations in prisms and interprismatic material. In some places it may be seen that the crystals
are arranged in fan-shaped clusters. Dentine in lower left corner. 3, Chulsanbaatar vulgaris Kielan-
Jaworowska, ZPAL MgM-1/62, I,, showing transversal section through ventrolateral enamel facet. The
prisms are somewhat smaller and their numerical density higher than in Kryptobaatar (Pl. 48, fig. 1) and
Stygimys (fig. 1) enamels. The interprismatic enamel consists of crystals orientated with their long axes in
the figured plane from top to bottom, e.g. normal to the outer enamel surface while the crystals of the prism
cores are nearly normal to the figured plane. Arcade shaped grooves surround the prisms, the apices of
which point towards the dentine at top. 4, Meniscoessus sp., ZPAL MK-1/9, M., showing arcade shaped
grooves surrounding the large prisms, the apices of which point in the cuspal direction at left. Crystals of
interprismatic enamel are generally normal to the figured surface, while the crystals of the prisms are inclined
to the left. 5, docodont molar (gen. et sp. indet.), PIFU no number. There is no organization of crystals in
prisms and interprismatic enamel, but the uneven appearance of the etched surface indicates the presence
of crystal clusters about 5 um wide.
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a small angle with the polarizer axis, poorly defined band-like 5-6 um thick structures could be seen
in plagiaulacoid as well as docodont enamels, running radially from the inner to the outer surface
(Pl 50, figs. 2-5). Enamel tubules were very scarce. In polarized light the longitudinally cut Chul-
sanbaatar, Kryptobaatar, and Stygimys enamels showed discrete broad and straight bands of a
regular width, running at an angle of approximately 45° to the outer enamel surface. Enamel tubules
were abundant, coursing from the dentine enamel junction along the bands for short distances, but
mostly crossing them, running mainly in a radial direction (Pl. 50, figs. 6-8). Longitudinally sec-
tioned Mesodma premolar enamel like that of the taeniolabidoid enamels showed discrete bands of
a regular but much narrower width. A few enamel tubules were seen (Pl. 50 fig. 9). Black spots like
those seen in the plagiaulacoid enamel, but irregularly arranged, were observed in some sections of
taeniolabidoid enamels. The bands of the docodont and plagiaulacoid enamels were most distinctly
seen when their long axes were parallel with one of the polarizer planes. They were negatively
birefringent when positioned with their long axes diagonally in the field of vision; in this position
these enamels seemed structureless. The bands of the taeniolabidoid and Mesodma enamels shown
in Plate 50, figs. 6-9, were also negatively birefringent with respect to their length, and most
distinctly seen by maximum prism extinction which occurred when they were inclined a little,
relative to one of the polarizer planes; from 0° to 20° for the different sections and different enamel
areas within each section. This maximum extinction was obtained by rotating the stage with the
section in the direction of the prism inclination towards the cusp from the position where the prisms
were parallel with one of the polarizer planes.

DISCUSSION

Poole (1956) found that tooth enamel in synapsid reptiles was non-prismatic as the crystals were
arranged in closely packed cylindrical groups that were normal to the enamel surface. They were
called pseudo-prisms. Poole (1957) stated that prismatic enamel generally originated in primitive
mammals. Moss (1969) studied fossil therapsid, non-therian and therian enamels, including the
enamel of fossil marsupials and placentals, and concluded that therapsid and a/l non-therian enamels
are continuous, but with a banded appearance in longitudinal thin sections when viewed in the
polarizing microscope. According to the same author true prismatic enamel which is characteristic

EXPLANATION OF PLATE 50

Figs. 1-9. Thin sections of enamel of longitudinally sectioned teeth micrographed in transmitted light with
the same magnification, x 875. Excepting fig. 1 where normal light was used, the sections were micrographed
in polarized light with crossed filters. The incisal/cuspal direction is to the left, dentine below. 1, late
Jurassic, Kimmeridgian plagiaulacoid molar (gen. et sp. indet.). Black spots within the enamel lie in rows
probably along growth lines (striae of Retzius). A few enamel tubules are seen, section thickness 60 um.
2, the same section showing indistinct band-like structures of irregular width normal to the dentine where
hair-pin bends of dentinal tubules are seen. 3, late Jurassic, Kimmeridgian docodont molar (gen. et sp.
indet.), showing band-like structures normal to the dentine enamel junction, section thickness 55 um.
4, Paulchoffatia sp., PIFU VJ 273-155, P!, showing band-like structures nearly normal to the dentine, section
thickness 90 um. 5, Kuehneodon sp., PIFU VJ 308-155, P35, showing band-like structures normal to the
dentine, section thickness 90 pum. 6, Chulsanbaatar vulgaris Kielan-Jaworowska, ZPAL MgM-1/62, I,,
showing distinct, broad bands of regular width inclined about 45° to the dentine enamel junction, enamel
tubules cross the bands, section thickness 80 um. 7, Kryptobaatar dashzevegi Kielan-Jaworowska, ZPAL
MgM-1/53, P,, showing distinct bands of similar width and orientation as in fig. 6, section thickness 90 pm.
8, Stygimys kuszmauli Sloan and Van Valen, UM no. 5, M,, showing slightly broader bands but of similar
orientation as in figs. 6 and 7, enamel tubules crossing bands, section thickness 60 um. 9, Mesodma thompsoni
Clemens, UM no. 3, P4, showing distinct curved bands, but of a narrower width than in figs. 6, 7, and 8, a
few enamel tubules are seen, section thickness 50 ym.
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only for Theria first appeared in the early Cretaceous (Albian) forms. Poole (1971) studying Jurassic
dryolestids, suggested that prismatic enamel originated in Theria. Poole and Cooper (1971) found
prismatic enamel in the extant agamid Uromastix however, and concluded that enamel prisms are
not confined to mammals. Osborn and Hillman (1979) studied by polarizing microscopy the enamel
of the pelycosaur Dimetrodon, the therapsids Thrinaxodon, Probainognathus, Probelesodon, Dia-
demodon, and Massetognathus, the early Jurassic primitive triconodont Eozostrodon (? = Mor-
ganucodon), a late Cretaceous dryolestid, and therian mammals. They found that prismatic enamel
only appeared in the Cretaceous non-therian and therian mammals. In the Permian Dimetrodon
the enamel was micromorphologically homogeneous with regard to crystal orientation, whereas all
Triassic-early Jurassic enamels are characterized by ‘an arrangement of close-packed hexagonal
columns of crystals (Osborn and Hillman 1979, p. 58). In a longitudinal section of Diademodon
enamel a column of crystals was about 5 ym wide. There was no interprismatic enamel. These
observations concerning crystal orientation in Triassic-early Jurassic enamels are consistent with
the results of our light and SEM microscopic study of the late Jurassic plagiaulacoid and docodont
enamels as radially orientated bands about 5 um wide were seen in longitudinal sections (P1. 50,
figs. 2-5) and prism-like structures with interproximate central distances of about 5 um in tangential
planes (text-fig. le, f). In SEM the late Jurassic enamels studied by us showed crystals spraying out
towards the outer enamel surface from the centre of 5 um thick closely packed ‘columns’ (Pl. 49,
figs. 2 and 5).

Grine et al. (1979) by SEM studies found discrete prisms with interprismatic enamel between
them in Eozostrodon teeth. Grine and Vrba (1980) also demonstrated prismatic enamel in the
cynodont Pachygenelus. Interprismatic central distances according to magnifications were about
5 um. Frank et al. (1984) described ‘preprismatic’ enamel in late Triassic haramiyids and so did
Sigogneau-Russell ez al. (1984) in the early Jurassic therian Kuehneotherium. Preprismatic enamel
according to these latter authors consists of radially arranged columns of crystals similar to those
described by Osborn and Hillman (1979) and by us in this paper. Excepting the results of Grine ef
al. (1979) and Grine and Vrba (1980), it may be concluded at present from the reports cited above
that prismatic enamel originated in non-therian mammals and not before the Cretaceous as stated
by Osborn and Hillman (1979), whereas preprismatic enamel where crystals are arranged in 5 um
thick closely packed columns originated in cynodonts, therapsids, and persisted in some non-
therians and therians from the Triassic through the late Jurassic. In light of this the findings of
Grine et al. (1979) and Grine and Vrba (1980) are perplexing and should encourage further studies
on enamel microstructure of non-therian forms of pre-Cretaceous age. :

Our findings support the hypothesis of Fosse et al. (1978) that the multituberculate suborder
Taeniolabidoidea was characterized by remarkably large and widely separated enamel prisms.
Osborn and Hillman (1979) have confirmed the existence of such large prisms in Catopsalis sp. and
Stygimys sp. Carlson and Krause (1982) with a few exceptions found large prisms in Taenio-
labidoidea. The oldest ZPAL multituberculates derive from the late Cretaceous, Gobi Desert,
Djadokhta Formation, which is of ?late Santonian and/or ?early Campanian age (see Material).
However, due to the courtesy of Dr. Demberlyin Dashzeveg we were able to examine by incident
light microscopy the enamel microstructure of two identified and two unidentified multituberculate
teeth from the early Cretaceous (?Aptian or ?Albian) of Guchin Us, Gobi Desert, Mongolian
People’s Republic (see Clemens et al. 1979). They are the specimens GI PST 10/11, GI PST 10/13,
GI PST 10/29, and GI PST 10/23 housed in the Institute of Geological Sciences of the Mongolian
Academy of Sciences in Ulan Bator. These teeth show the same size and numerical density of prisms
as do the Taeniolabidoidea from late Cretaceous of Asia (Table 1). The Guchin Us multituberculates
are currently being investigated by Kielan-Jaworowska, Dashzeveg, and Trofimov and if it can be
demonstrated that the Early Cretaceous Asian multituberculates are close to the ancestors of late
Cretaceous Taeniolabidoidea, which the enamel structure indicates, it may be concluded that this
peculiar prismatic enamel structure was established and persisted in Taeniolabidoidea through a
time span ranging from Aptian or Albian to late Palaeocene.

Our finding that Mesodma (suborder Ptilodontoidea) enamel had a mean prism density of 25800
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per mm? agrees with the results of Fosse et al. (1978), but disagrees with the conclusion of Sahni
(1979) with regard to Mesodma enamel. By our method we calculated the densities 24120, 22300,
and 19840 respectively in his figured Mesodma enamels (Sahni 1979, pl. 1, figs. 2, 3, and 6), which
represent cross-cut prisms in Mesodma enamel in his paper. Therefore, we submit that in Mesodma
enamel, there is a significantly higher prism density and smaller prisms than in the representatives
of Taeniolabidoidea. Carlson and Krause (1982) in other ptilodontoid taxa also found prism
diameters similar to those we observed in Mesodma enamels. It seems that Ptilodontoidea do not
differ significantly with respect to numerical prism density from many recent representatives of
Eutheria (Fosse 19685, d) and Metatheria (Fosse et al. 1973), nor from the late Cretaceous eutherians
Protungulatum donnae (Fosse et al. 1978) and Kennalestes gobiensis (Table 1 in this paper). Thus the
enamel in Taeniolabidoidea is gigantoprismatic, meaning that the prism density per unit area is four
to five times lower than in the ptilodontoid Mesodma sp. and in all other known mammals. Poole
(1956) suggested that during amelogenesis each column in pseudoprismatic enamel may be the
product of one ameloblast. Assuming that columns in preprismatic enamel and prisms in ‘normal’
as well as gigantoprismatic enamel are the products of single ameloblasts, the present documentation
concerning the range of column and prism dimensions, see text-fig. 1, demonstrates the enormous
diversity in ameloblast diameters in mammals. It may be speculated that each prism and half the
thickness of interprismatic enamel surrounding it were formed by more than one ameloblast in
taeniolabidoid enamel. Considering the similarity of crystal orientation in prisms and interprismatic
material between gigantoprismatic and ‘normal’ enamel (Pl. 48, figs. 1, 3, and 4), this seems
improbable and would represent a very unique and special organization of the active ameloblasts
in Taeniolabidoidea compared with Ptilodontoidea and other extinct and all Recent mammals.

Fosse et al. (1973, Figs. 1, 12, and 13) in the medial facet (not explicitly named so) of a
multituberculate incisor from the Hell Creek Formation, Montana, later identified as belonging to
the Taenilabidoidea (Fosse et al. 1978), observed that the prism rods deviated in a transversal plane
relative to the tooth. In the ventrolateral facet (named buccodistal, Fosse et al. 1973) of the same
tooth the prism rods in the inner two thirds of the enamel deviated towards the tip of the crown. In
the present study the same general arrangement of prism rods was observed in sections of the
incisors of Chulsanbaatar vulgaris, ZPAL MgM-1/62 (Pl. 49, fig. 3), and S. kuszmauli, UM no. 5
(PL. 49, fig. 1), and we tentatively suggest that this prism rod orientation in incisor enamel may be
common to all late Cretaceous Taeniolabidoidea.

Fosse et al. (1973, Fig. 6) described the crystal orientation in multituberculate enamel, stating
also that the prisms are arcade shaped in cross-section, and that the apices of the arcades point in
the direction of the inclination of the prism rods relative to the dentine enamel junction. The same
orientation of the crystals and the same morphology of the cross-cut prism rods were found in
the present study of taeniolabidoid and ptilodontoid late Cretaceous enamels by SEM (Pls. 48 and
49). Polarized light microscopy indicated that the c-axes of the crystals in the prisms are inclined
slightly in a cervical direction relative to the long axes of the prism rods, as the acute angle between
prism rods and polarizer plane in the extinction position was cervically positioned relative to the
prism rods.

In twelve mandibles from the ZPAL collection we were able to compare the prism density of
incisors, premolars, and molars and in ten of them the numerical density was lower in incisors
than in premolars or molars; in two of these it increased as much as twofold from incisor to molar
(Table 1). It should, however, be stressed that the lowest prism densities of Mesodma or other
mammalian teeth studied were about twice as high as the highest in taeniolabidoid molars.

Like Sahni (1979, Table 1 and pl. 3, fig. 6) we found gigantoprismatic enamel in the late
Cretaceous North American Meniscoessus. If other genera of Cimolomyidae are distinguished by
gigantoprismatic enamel this may indicate a relation of that family to Taeniolabidoidea, although
the lower incisors in Cimolomyidae (Archibald 1982) are completely covered by enamel, a feature
characteristic of Ptilodontoidea.

In view of the documented large difference between the microstructure of taeniolabidoid
and ptilodontoid enamel, we believe that future studies of enamel microstructure may assist in
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establishing the systematic position and phylogenetic reldtionships of some poorly known multi-
tuberculate groups regarded at present as incertae sedis.
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