
Palaeo-Math 101
Principal Warps, Relative Warps, and Procrustes PCA

If you’ve hung in there through the last two columns you’ll be happy to know that the worst of the 
mathematics in what is typically referred to as geometric  morphometrics is over. Thin plate splines and 
principal/partial warps are irreducibly complex mathematical topics that can only be simplified to provide a 
general introduction to a certain extent. This is one reason why so few users understand them fully. The good 
news is there’s only one more warp-based method left to learn, relative warps. The bad news, which will 
hopefully be corrected with this column, is that, despite being the most useful of the warp-based methods for 
routine morphometric  data analysis, relative warps are also, arguably, one of the least well-understood by 
practitioners. So, to quote the immortal Bard “Once more unto the breach, dear friends, once more”.

First, let’s remind ourselves of the ultimate goals for any geometric morphometric analysis - to define a 
mathematical space in which we can compare sets of landmark configurations that (1) ordinates shapes on 
the basis of their similarity, (2) treats these configurations as a whole entity rather than an accumulation of 
independent parts, (3) respects the conventions of the Kendall  shape space, (4) supports shape modelling, 
and (5) is stable in the face of minor changes to the sample and/or reference shape. If we think back many 
columns ago now, a classic  principal components analysis (PCA) of linear distances between landmarks 
ordinates shapes on the basis of their mutual  similarity and is reasonably stable in the face of minor changes 
to the sample. The spaces formed by classical  PCA can also be modelled, albeit with difficulty 
(Gnanadesikan 1977, Everitt 1978). But sets of linear distance data do not  comprise a geometric entity in 
their own right or conform to the strictures of the Kendall  shape space (see MacLeod 2009a). Accordingly, 
this approach is not considered especially ‘geometric’ in its treatment of morphometric data. 

The thin plate spline (TPS) is technique that creates models of shapes described by landmark configurations 
as unified deformations. As such, the TPS is not a shape ordination method at all. Rather, it’s a graphical  tool 
that can be used to compare any two landmark-defined shapes. 

Principal and partial  warps ordinate landmark configuration-defined shapes on the basis of their mutual 
similarity and support shape modelling. In a sense though, these methods ignore the Kendall  shape space  
entirely insofar as they are based on a single shape — the reference shape — that is used to define a series 
of hypothetical deformations based on the arrangement and spatial  scale of that shape’s landmarks. These 
deformations are then used to create a set of spatially ordered deformational  modes that can be used as 
shape-variation descriptors. While these descriptors (or warps) are consistent with the conventions of the 
Kendall shape space, they don’t exploit its power. 

So, despite having spent the last four — arguably the last six — columns developing aspects of the tools we 
need to realize our goal of achieving a truly geometric  description of shape variation, we don’t seem to be 
there just yet. Nevertheless, today, we’ll arrive at our destination.

Most presentations of relative warps follow on from a discussion of principle warps. While this is perfectly 
reasonable from a mathematical  point of view, the convention has led to substantial and largely needless 
confusion over the nature of relative warps. I’ll  try to clear this confusion up here and, at the end, provide an 
easy way to calculate the bit of a relative warps analysis most morphometricians are interested in.

Recall, principal warps are the principle components of the bending energy matrix (Lp-1). This the inverse of 
the matrix Lp that expresses the spatial pattern of proximities of the landmark configuration’s shape 
coordinates.
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where,

U rij( ) = rij2 ln rij2 (21.2)



In equation 21.2, r2ij is the square of the distance between the shape coordinates of landmarks i and j in the 
reference configuration and ln is the natural logarithm function (base e). 

If the Lp matrix expresses the proximity of landmarks to each other in the shape coordinate space, its inverse 
expresses the the reciprocal  of proximity. Accordingly, in the bending energy matrix relatively large values 
are assigned to comparisons between landmarks that lie proximate to one another and relatively small 
values to landmarks that lie at a distance from one another. 

Taking the inverse of the Lp matrix quantifies our metaphor of shape change as a deformation that minimizes 
the ‘energy’ required to map one configuration of landmarks into another when that mapping is expressed as 
an interpolation surface or plate. This mode of interpolation differs from the more widely used elastic 
interpolation model  because elastic  deformations do not attempt to achieve global  minimization of overall 
amount of deformation specified by the interpolation. In quite a profound sense use of the thin-plate spline 
metaphor encompasses the philosophical stance of trying to explain the features of nature by invoking 
models of minimal  change. However, it needs to emphasized that, while this is convenient underlying, logical 
assumption and an elegant mathematical  constraint, it may not adequately express the manner in which 
shape changes actually came about from either mechanistic  biological or evolutionary perspectives. It is also 
very important to remember that the bending energy matrix is derived solely from information supplied by a 
single shape - the reference shape.

An eigenanalysis of the bending energy matrix (Lp-1) defines the set of principal warps. These are a set of 
mutually uncorrelated, non-linear modes of shape variation ordered in terms of spatial  scale. The 
eigenvalues (principal values) derived from this eigenanalysis represent the relative amount of bending 
energy subsumed by each deformation mode. 

The eigenvectors (principal  warps) represent the geometries of the deformation modes themselves. High-
energy modes express deformations whose geometries are relatively localized. Low-energy modes express 
deformations whose geometries are relatively generalized. Regardless, all modes specify a pattern of 
deformation that encompasses all landmarks. Although the differences between these modes lie in the extent 
of their relative regionalization, none can be regarded as being strictly regionalized in the sense that they 
involve only a subset of the existing landmarks. Computationally, all  landmarks are always included in — and 
must taken into consideration when interpreting — all principal warps.

The only advantage principal warps provide is a means whereby the configuration of a reference shape’s 
landmarks is transformed from a simple set of shape coordinate values to a complex series of spatially 
ordered deformational modes. When these modes are taken together they constitute a redescription of the 
original bending energy matrix. This is analogous to a standard covariance-based PCA of any data set. A 
PCA does nothing more (or less) than provide a redescription of the original data in terms of a series of 
variance-ordered vectors (components) formed from the original  variables (see MacLeod 2005). Like PCA, 
principal warps can be used to form the axes of a high-dimensional coordinate system into which landmark 
configurations other than the reference shape can be projected and the set of projections viewed as an 
ordination plot (see MacLeod 2010a). Such plots provide a visual  sense of the degree to which these non-
reference landmark configurations are similar to, or differ from, the reference configuration in a manner that 
is weighted by the geometric mode of deformation being expressed by each principal warp.

The easiest way to achieve this projection is to simply multiply the matrix of eigenvectors of the bending 
energy matrix (E, the principal  warps) by the matrix of deviations of the landmarks of the shapes you wish to 
project into the principal  warps space in the x (X’) or y (Y’) directions from the reference shape. This yields 
the weight matrix (W).

Wx = E ′X
Wy = E ′Y (21.3)

Bookstein (1991) suggested that, prior to this multiplication, the principal  warps matrix be scaled by the 
inverse of the square roots of the principal  values. The geometric result of this weighting is to emphasize 
large-scale deformations when determining the final  values of W. However, like all  weighting schemes in 
data analysis, this re-weighting needs to be justified in the context of each analysis. 

Operationally, this weighting is accomplished by the following equation.

′E = EΛ−α /2 (21.4)
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where Λ is the diagonalized matrix of principal values and α is the weighting factor. For Bookstein’s (1991) 
weighting scheme α = 1. If α > 0 large-scale variations will be weighted more highly in the determination of 
W. If α < 0 smaller-scale variations will  receive greater weight. If α = 0 variations at all  scales will  be 
accorded equal weight. 

Because of the obligation to justify all  weighting schemes, a prudent default value for any principal warps 
analysis is α = 0. Nevertheless, the ability to set the α parameter to any desired value does give the analyst 
scope (albeit limited and rather crude) to fine-tune their analysis by allowing it to be focused, to a greater or 
lesser extent, on a generalized category of spatial variation. While adjustment of α can make a dramatic 
difference to principal warp ordinations, user’s should avoid the temptation use this parameter to try to make 
any partial warps ordination fit any particular hypotheses. Usually such an exercise is futile owing to the non-
linear character of the principal warps themselves; they just don’t behave in a regular, predictable manner. 
However, in all cases such post hoc adjustments are indefensible.1

Once we’ve re-expressed the shapes in our sample as a set of W-matrix scores the hard part of relative 
warps analysis is over — or so most textbooks would have you believe. A classic  relative warps analysis 
takes the complete set of these scores for both Wx and Wy and uses these as input into a standard 
covarince-based PCA. 

On first inspection you might wonder “What’s the point of that? After all, a covariance-based PCA of a 
complete set of PCA scores should yield the original set of PCA scores. Nothing is gained by doing a PCA of 
a PCA. But recall the basis for a principal  warps analysis is not the sample of shapes you’re interested in, but 
only the spatial information supplied by the reference shape. Moreover, the bending energy matrix is not a 
complete representation of shape variation within the reference shape, only the non-linear (= non-uniform) 
part thereof. 

This strict dependence of the principal warps on the reference shape is the source of its most interesting and 
seductive feature: the fact that the principal warps are sample independent. Because of this feature the 
principal warps can be used as a geometric  reference system that is completely indepedent of any sample. 
Unfortunately, it also means that each system of principal warps is fundamentally tied to what is essentially 
an arbitrary choice of reference. This choice can be made a bit less arbitrary by adopting the standard 
convention of using the sample mean shape as the reference. But, while this convention has the very 
desirable property of ensuring the linear relative warp spaces defined as combinations of the non-linear 
principal warp deformation modes are placed at a reasonable location within the set of shapes of interest, it 
also means the analyst has sacrificed the sample independence of their principle warps analysis unless the 
(equally arbitrary) decision is made to stop computing or updating the mean shape for other samples or 
subsequent analyses.

Setting these issues aside, a PCA of the total W matrix will result in a summary of shape variation that’s been 
optimised for a particular sample. If pursued in the standard mode, this summary will  focus strictly on the 
non-linear aspects of shape variation (e.g., those that have a bending energy). It will  also encompass 
variation at all spatial  scales, though these might be differentially weighted (see the discussion of the α 
parameter, above). 

Going back to our original goals for a generalized shape analysis system, relative warps analysis provides 
the best fit in all categories: it ordinates landmark-based shape configurations on the basis of their mutual 
similarity, treats these configurations as a unified geometric entities, respects the conventions of the Kendall 
shape space, supports shape modelling across all aspects of the geometric spaces formed by the relative 
warps either through thin plate splines or through direct back-calculation to the modelled landmark positions 
(see MacLeod 2009b, 2010b, and below), and owing to its sample-based character does not display the 
instabilities that come from referencing the shape spaces calculated to a single real or hypothetical 
specimen. In addition, relative warps analysis is also quite flexible in terms of the data it will accept. For 
example, if it would be advantageous to add-in scores calculated on the basis of the uniform component of 
shape variation, this is easily accommodated under relative warps analysis. It’s also possible to use the α 
parameter to focus the secondary relative warps analysis on variation existing as higher or lower spatial 
scales, provided there’s a clear justification for doing so (e.g., a desire to investigate allometric  relations 
among the shape variables). Although not usually recommended, it’s even conceivable, at least in principle, 
to envision a relative warps analysis conducted on a subset of the principle warps thereby achieving a more 
complete contrast between shape similarity patterns at higher and/or lower spatial scales. These and many 
other data analysis variations are all possible in the context of relative warps analysis.
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To illustrate the calculations involved in, and the interpretations that can be made from, relative warps 
results, let’s take our trilobite cranidial landmark data through the procedure. To do this we’ll  use the 
complete set of 2(2k-3) principal  warps weights (= scores, where the number of landmarks [k] = 10 for the 
trilobite dataset) and the weights on the uniform component of shape change (see the Palaeo-math 101: 
Relative Warps spreadsheet). Table 1 shows the eigenvalue data table for the covariance-based 
decomposition of these data.

Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.Table 1. Eigenvalues for the trilobite principal warp weight data.
Relative 

Warp Eigenvalue
Variance 

(%)
Cum. Variance 

(%)
Relative 

Warp Eigenvalue
Variance 

(%)
Cum. 

Variance (%)
1 0.010165 32.054 32.054 9 0.000379 1.195 98.421
2 0.008737 27.551 59.605 10 0.000226 0.711 99.133
3 0.005782 18.233 77.838 11 0.000119 0.375 99.508
4 0.002277 7.180 85.018 12 0.000083 0.262 99.769
5 0.001594 5.027 90.045 13 0.000048 0.151 99.920
6 0.001098 3.463 93.508 14 0.000019 0.059 99.979
7 0.000663 2.089 95.598 15 0.000005 0.016 99.995
8 0.000517 1.629 97.226 16 0.000002 0.005 100.000

Unlike principal warps none of the calculated eigenvector axes have been forced to adopt a value of 0.0 by 
the Procrustes alignment, though some of the eigenvalues for the higher-level  relative warps are quite small. 
For these data 95 percent of the observed shape variation in the plane tangent to the Procrustes shape 
hemisphere at the sample mean shape is represented by the first seven relative warps.

The complete table of eigenvectors for this relative warps decomposition is too large to list here (see the 
Palaeo-math 101: Relative Warps spreadsheet). The loading coefficients for the first three of these relative 
warps axes are listed in Table 2. Together these relative warps account for over 75 percent of the shape 
variation recorded in our data. Looking in detail at this subset of the complete relative warps result will suffice 
for the purposes of our discussion.

Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.Table 2. Eigenvectors for first three relative warps of the principal warp weight data.
Variables RW-1 RW-2 RW-3 Variables RW-1 RW-2 RW-3

7x -0.01609 0.00009 -0.03613 3x -0.01479 0.05742 0.11671
7y 0.11465 0.22508 -0.11939 3y -0.15088 0.33290 0.16358
6x 0.03289 0.04351 -0.10082 2x -0.21862 -0.73287 -0.16674
6y 0.17190 0.23071 0.19009 2y -0.06492 -0.01871 -0.08939
5x -0.23806 -0.31562 0.16125 1x -0.03415 -0.07068 -0.01909
5y 0.01569 0.06115 -0.00477 1y 0.76768 -0.30589 0.37800
4x -0.06303 0.07008 -0.49319 Uniformx -0.47599 0.01294 0.66704
4y -0.02969 0.10878 0.02883 Uniformy 0.04622 -0.15432 0.06069

The relative warps eigenvectors represent a set of displacements at each landmark location across the form 
as mediated by the non-uniform and uniform shape deformations specified by the partial warps scores (= 
weights) that served as the variables in this analysis. These scores themselves denote a varying system of 
weights applied to each partial warp variable that, together, summarize all observed shape-based variations 
exhibited by the 18 trilobite specimens included in the sample, ordered by the amount of shape variance 
being summarized along each relative warp. 

This loading table may be interpreted in a manner identical to that of a standard principal components 
loading table. For the trilobite data the first relative warp axis (RW-1) expresses a geometric contrast 
between partial  warps 1y and (to a lesser extent) 6y with respect to the Uniformx warp and (to a lesser extent) 
partial warps 5x and 2x. Specimens projecting to positions high on the RW-1 axis represents shapes that 
exhibit high covariance with partial warps 1y & 6y, and low covariance with partial warps 5x and 2x and with 
the uniform component of shape change long the x-axis. All the other relative warp axes are be interpreted in 
a similar manner.
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The scores along these relative warp axes represent covariances between the observed shapes and these 
sets of latent, non-linear shape variables. These scores are calculated in a manner identical to that of PCA 
scores and can be plotted in two or three dimensions to assemble a picture of the dominant patterns of 
shape similarity/difference existing within the sample (Fig. 1).

As we have seen before in other analyses, the dominant shape contrast in this dataset occurs between the 
landmark-defined shapes of Acaste-Ceraurus and Sphaerexochus with the most important subdominant 
contrast being that between Acaste-Ptychoparia-Sphaerexochus and Deiphon. On the basis of this analysis 
Deiphon and Sphaerexochus also can be seen to relative unique shapes within this sample — shape outliers 
in a sense — while the landmark-defined shapes for all other the other genera form a broad band of shape 
variation oriented at an angle to the two dominant shape-variation trends.

Take the time to note how different this representation of shape variation within the sample is from any of the 
principal warps scatterplots I included in of the last column (MacLeod 2010a, Fig. 4). The shape variation 
information present in each of those principal  warps plots has been included in the construction of Figure 1 
(above). In the same way as a scatterplot of a PCA scores from any data set will  look very different from 
plots of any two included variables, Figure 1 represents of summary of the information included in all  the 
partial warp plots. This is a primary reason why relative warps are preferred to principal warps for most 
morphometric applications. 

More than this however, Figure 1 represents the projection — in a linear space — of the positions of the 
various trilobite landmark configurations that represent these genera in their geometrically correct places on 
the surface of the Procrustes shape hemisphere. As such, this plot represents a better summary of geometric 
shape variation in these data than any other available to us at this time. We can (and will) collect other sorts 
of data from these specimens and take a look at what alternative summaries of cranidium geometry might tell 
us in upcoming columns. But so far as these landmark data are concerned, we have, at last, reached the end 
of our data analysis journey. There is no better summary of the geometry of these data that I can show you 
or teach you how to calculate. The only thing that remains is for you to calculate these types of summaries 
for datasets of your own. 

But I do have one last trick up my sleeve which you might fine interesting. As I’m certain you appreciate, 
taking the path to a relative warps analysis that leads through principal warps analysis is conceptually 
complex and computationally intensive. Software can ease the computational load, but not the conceptual 
intricacies of selecting reasonable options and interpreting the results. Is there no shorter, more direct route 
between our data and the relative warps results we need to to use to interpret those data? As it turns out, 
there is.

The more direct solution to the calculation of relative warp ordinations is implicit in prior published 
discussions of the relative warps technique and, indeed, implicit in the presentation you’ve just read. The 
problem is, unless you were already very familiar with the principal  warps and/or very experienced in reading 
descriptions of mathematical procedures, you probably missed it. 

5

Figure 1. Scatterplot of  trilobite cranidium landmark configuration scores in the plane 
of  the first two relative warps of  the principal warps and uniform shape component 
data.



Recall  I said that principal warps constituted a “redescription of the original  data in terms of a series of 
variance-ordered vectors (components) formed from the original variables”. Recall also that I said “a 
covariance-based PCA of a complete set of PCA scores should yield the original set of PCA scores’. A 
covariance-based PCA of the complete set of PCA scores obtained from any dataset will be precisely the 
same as a PCA of the original  data, save for minor differences due to rounding error. Accordingly, one might 
suppose that, since the complete set of principal warp weights is a redescription of the original Procrustes 
suposed shape coordinate data, and since a standard relative warps analysis is a PCA of the complete 
principal warp weight matrix (W), the same result could be obtained directly from a PCA of the Procrustes 
suposed shape coordinates.

Table 3 lists the eigenvalue table the PCA decomposition of the original  Procrustes aligned trilobite cranidium 
landmark data.

Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.Table 3. Eigenvalues for the Procrustes superposed data.
Principal 

Component Eigenvalue
Variance 

(%)
Cum. 

Variance (%)
Principal 

Component Eigenvalue
Variance 

(%)
Cum. 

Variance (%)
1 0.010167 31.972 31.972 10 0.000226 0.711 98.997
2 0.008739 27.483 59.455 11 0.000127 0.401 99.398
3 0.005788 18.201 77.655 12 0.000110 0.345 99.742
4 0.002277 7.159 84.815 13 0.000056 0.177 99.919
5 0.001595 5.014 89.829 14 0.000019 0.059 99.978
6 0.001099 3.455 93.284 15 0.000005 0.016 99.994
7 0.000677 2.130 95.414 16 0.000002 0.005 99.999
8 0.000522 1.641 97.055 17 0.000000 0.001 100.000
9 0.000392 1.231 98.286 18 0.000000 0.000 100.000

Note the close correspondence to the values listed in Table 1 (above). Similarly, Table 4 listed the 
eigenvectors of the PCA decomposition of the original Procrustes aligned trilobite cranidium landmark data.

Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.Table 4. Eigenvectors for first three principal components of the Procrustes superposed data.
Variables PC-1 PC-2 PC-3 Variables RW-1 RW-2 RW-3

1x 0.18735 0.18834 0.18539 6x 0.04657 -0.03620 -0.01481
1y 0.54793 -0.13417 -0.00605 6y -0.29915 -0.03074 0.27713
2x 0.15313 0.00395 0.11021 7x 0.12554 0.51104 -0.19220
2y -0.08223 -0.00822 -0.09660 7y -0.02902 0.13086 -0.36697
3x -0.19078 -0.39566 0.25921 8x 0.03099 0.16922 0.30528
3y -0.12871 0.22154 -0.28985 8y -0.14356 0.22891 0.32788
4x 0.01393 -0.20102 -0.28655 9x -0.16064 0.09850 -0.27932
4y -0.12405 0.15837 0.36320 9y -0.05696 0.01036 -0.11567
5x -0.03780 0.03002 0.01764 10x -0.16830 -0.36819 -0.10484
5y -0.24675 -0.31172 -0.15267 10y 0.56249 -0.26517 0.05961

These vectors are aligned differently than those derived from the principal warps data (compare with Table 2, 
above). After all, there are 20 variables in this system and only 16 in the principal warps system. 
Nevertheless, when the the original  cranidial landmark data are projected into the space formed by the first 
two Procrustes principal components are plotted …
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… the resultant ordination is essentially identical to that of the formal relative warps ordination (compare with 
Fig. 1). Note this ordination is also identical to the one we generated in our discussion of Procrustes shape 
coordinates (see MacLeod 2009c).

The close link between relative warps analysis and a PCA of Procrustes-aligned shape coordinate data has 
been known, appreciated, and used by experienced morphometricians for many years, even to the extent 
that it is routinely alluded to in presentations of the method at technical meetings. But for some reason this 
useful equivalence has only rarely made it into published articles and textbook treatments, and even then the 
relation tends to described in obscure ways. 

For example, in the Zelditch et al. (2004) morphometrics primer the term ‘relative warps’ is not included 
whereas a discussion of Procrustes PCA is. The fact that the former is absent from the text because the 
latter has been included is not mentioned. Similarly, Jim Rohlf’s tpsRelw  program requires users to calculate 
the principal warps decomposition before they can produce a relative warps result. This reinforces the 
impression that principal  warps analysis is a necessary praecursor to relative warps analysis. While taking 
the formal route through principal  warps might be necessary if a user intended to take advantage of the 
ability to use the α parameter to alter the spatial  focus of the resulting relative warps analysis, the default 
value of the α parameter in Jim’s programme is set to 0 making the ordination identical that which would be 
obtained more directly from a Procrustes PCA. 

Add to this the fact that the Procrustes PCA alternative also produces a set of eigenvector loadings that can 
be interpreted more readily in terms of the original superposed shape coordinates, and that can be used to 
create thin plate spine models of the deformations characterizing any part of the ordination space in a 
straight-forward and computationally simpler (= more easily understood) manner than the method required 
by formal calculation from the principal  warps weight matrix, and you can appreciate the clear advantages of 
performing this analysis via Procrustes PCA than by calculation from principal warps weights (= scores).

Finally, Table 5 illustrates the advantages of calculating the along-axis shape models when making 
interpretation of the Procrustes PCA/relative warps axes, with the models represented (in this case) as thin 
plate splines (see MacLeod 2010b; note the modelling method discussed in MacLeod 2009b could also have 
been used as an alternative). Comparing the geometry of these models down each shape space axis makes 
the geometric interpretation of each axis a quick and easy process. 

For our trilobite data, the Procrustes PCA/relative warps Axis 1 represents a dominant shortening of the 
cranidium in the anterio-posterior direction and a subordinate asymmetrical twisting of the shape from right to 
left down the axis. This twisting is, in all  likelihood not a biological signal but rather a preservational artefact 
present in the specimens used in this dataset and emphasized as an important shape-variation trend 
(primarily) due to the small number of specimens included in this dataset. Along the Procrustes PCA/relative 
warps Axis 2 the (likely) artifactual  twisting is also present, but this time as the dominant mode of shape 
variation and oriented in the opposite sense (from left to right) as one moves down that axis. As a statement 
of the power of the Procrustes PCA/relative warps approach to shape analysis it’s worth noting here that 
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Figure 2. Scatterplot of  trilobite cranidium scores in the plane of  the first two principal 
components of the Procrustes superposed shape coordinate data.



none of the other shape analysis procedures we’ve submitted these trilobite cranidial data to have revealed 
the preservation issues existing within this set of trilobite specimens in so clear and obvious a manner.

Table 5. Along-axis thin plate spline models illustrating dominant (Axis 1) and subdominant (Axis 2) modes 
of shape variation in the trilobite cranidium as expressed by landmark data. Numbers below each model 
express coordinate position in Figure 2 reconstructed.
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Procrustes PCA Model -2 Model -1 Mean Shape Model 1 Model 2

Axis 1Axis 1

(-0.106, 0.045) (-0..044, 0.045) (0.018, 0.045) (0.080, 0.045) (0.142, 0.045)

Axis 2Axis 2

(0.018, -0.07) (0.018, -0.013) (0.018, 0.045) (0.018, 0.103) (0.018, 0.16)

Since most palaeontologists have access to PCA software that can be used to analyze any dataset, because 
of the more direct nature of the calculations, and because of the more readily interpretable nature of the 
results, I advocate the Procrustes PCA approach to the summarization/exploration of shape variation trends 
in a sample of shapes described by landmarks. Once the Procrustes shape coordinates of a set of landmark 
data have been obtained, any quality PCA routine that allows use of the covariance (as opposed to the 
correlation) matrix as a basis of the eigenanalytic  decomposition can be used to analyse the sample. The 
Morpho-tools web site (http://www.morpho-tools.net/) has a Procrustes PCA option that you can use to 
analyse any set of landmark data online. Those wishing to undertake a formal principal warps analysis — 
there are good reasons to do this — are encouraged to use Jim’s tpsRelw program (downloadable from 
http://life.bio.sunysb.edu/morph/), which remains the morphometric industry standard. 

All  of the analyses performed for this essay were undertaken using Mathematica routines that I would be 
happy to supply to readers on request. Finally, all of the calculations needed to perform a Procrustes PCA 
could also be done in MS-Excel provided a plug-in module has been installed to allow MS-Excel  to calculate 
an eigenanalysis (e.g., PopTools, http://www.cse.csiro.au/poptools/). Now you really have no excuse not to 
start using Procrustes PCA/relative warps analysis today.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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