
Palaeo-Math 101
Principal and Partial Warps

While the topic of the last Palaeo-Math 101 column, the thin plate spline (TPS), is used by most 
morphometricians as a technique for obtaining models of shape deformations, the mathematical 
machinery that stands behind those abstract little grid diagrams provides much more than a 
simple graphical device. To understand what thin plate splines are from an analytical  point-of-
view we need to back off a bit and consider the mathematical problem they try to solve.

Figure 1 shows the results of a Procrustes (GLS) superposition of landmarks from the trilobite 
genera Acaste  and Calymene along with the resulting TPS grid. In this case Acaste was 
selected as the reference shape.

Figure 1. Graphic portrayal of  the deformation implied by  the transition between Acaste (A) and Calymene 
(B) based on an analysis of  topologically  homologous landmarks (1-10). Procrustes (GLS) superposition of 
landmarks with shape displacement vectors (C). Thin plate spline representation of  the Acaste → 
Calymene deformation (D).

Note that the primary shape differences between these two forms reside in the locations of the 
eyes (landmarks 3 and 9), the position of the intersection of the glabella and posterior margin of 
the lateral projection (landmarks 5 and 7), and the position of the apex of the lateral projection 
(landmarks 4 and 8, see Fig. 1C). Accordingly, the TPS representation of this deformation 
shows strong displacement of the grid lines in the region of these landmarks and negligible grid 
deformations in the regions of the other landmarks. The important bit about the TPS 
representation, however, and the reason it’s referred to as a spline, is that these strongly 
regionalized deformation patterns have been organized into a global model of non-linear 
displacements along the x and y axes that (1) mimics the character of a 3D surface in which the 
third axis (z) contains the displacement vector information and (2) appears to record the 
character of deformations in regions of the shape that have not been sampled by landmarks.

The TPS actually represents a method of solving a generalized problem in spatial statistics, 
namely the estimation of the value of a property (here length of the set of reference-target form 
displacement vectors) at an unsampled location based on the values of this property at 
neighbouring locations. In the field of spatial statistics this is a very common problem that is 
usually handled via a procedure called ‘kriging’ after its inventor, the South African mining 
engineer Daniel G. Krige.

Like the multivariate procedures I’ve discussed in previous columns, kriging is based on linear 
regression analysis. Unlike standard linear regression analysis though, it does not assume the 



dependent variable is either completely random or distributed deterministically with respect to 
the spatial variables. Rather, it assumes the dependent variable is regionalized.

The idea of regionalized variables is a fundamental  concept in spatial statistics.1 These are, in a 
sense, variables that exhibit properties intermediate between those of a random variable whose 
pattern of variation obeys no rule and has no consistent structure, and a deterministic variable, 
whose pattern of variation is strictly rule-based and highly structured. Regionalized variables are 
continuous from point to point throughout the geometric space over which they are defined and 
can exhibit high correlations (= structure) over short distances. Nevertheless, the apparent 
consistency in the structure of their variation is inversely related to the distance between 
locations such that it’s not usually possible to determine the rules by which variation is governed 
across the entire space. The solution to problems involving regionalized variables is to obtain a 
reasonable sample of variation at specific  locations across the space of interest, use regression 
analysis-like strategies to estimate localized substructures in the dependent variable, and then 
to join these substructures into a single, continuous, global model.

As with all modelling procedures, the answer you obtain from a kriging analysis is, to a large 
extent, determined by a set of assumptions relating to the structure of covariances that exist 
between locations across the space of interest. In the case of the TPS, this set of assumptions 
is encoded by the bending energy matrix, which assumes that variations between regions of the 
shape are structured as though the deformation is mimicking the behaviour that would be 
expected from the physical deformation of an infinitely thin metal plate.

When metal  plates are bent the physical energy that goes into deforming them is distributed 
over the entire plate in such a manner as to cause the energy required to hold the bend at any 
point on the plate to be minimized. In real metal plates flaws in their structure usually cause the 
bending energy to be focused in the region of the flaw. If this energy exceeds the strength of the 
material in the region of the flaw, the plate kinks or tears. But in a hypothetical, perfect metal 
plate of infinite strength the distribution of energy will be smooth and solely dependent on the 
spatial  scale of the bend. In other words, it will take relatively little energy to achieve a broad 
bend that involves the whole plate, a larger amount of energy to achieve a small, but localized 
bend in one region of the plate, and quite a lot of energy to achieve a large, localized bend in 
only one small part of the plate. For those readers who recall  the metalworking section of their 
‘Shop’ or ‘Practical Skills’ classes in secondary school, this should accord with personal 
experience.

Although no one is so naïve as to pretend that organismal  bodies are metal plates or that 
natural processes (e.g., development, evolution) are constrained to minimize the magnitude of 
deformations in a manner inverse to their spatial  scale, the metal plate metaphor has desirable 
properties in terms of the standard statistical  models we use to describe and model variation 
and change in many different contexts. Chief among these is the global minimization of 
deviations: the least squares model. Add this to the straight-forward assumption that spatial 
covariation across an area is structured in a manner that is uniform in all directions and 
conforms to a function that is the strict inverse of spatial scale and you have the essence of the 
TPS solution to the standard kriging problem. Additional mathematically convenient aspects of 
the TPS approach are that (1) all  TPS interpolations form surfaces that are smooth at all scales, 
(2) the TPS model is completely determined, which is to say it needs no ad hoc manual tuning, 
and (3) all  parameters needed to specify the TPS model can be estimated by solving a series of 
linear equations. As a general approach to fitting a continuous, global model  of 3D point 
distributions to sparse data, the TPS is simple, elegant, visually striking, and consistent with the 
manner in which we’re used to thinking about statistical descriptions of change in any number of 
parameters, including shape.

So, how can we get the TPS to produce an analytical  — as opposed to a strictly graphical — 
model of shape change in a sample of landmarks and, once we’ve got that, what (if anything) 
can we do with it? In the last column I showed you how to calculate a TPS models for individual 
deformations between reference and target forms. In order to explain how to the TPS formalism 
has been used in an analytical context there are a couple of things I need to remind you of.

The first of these is that, in all  instances, the geometry of the TPS of any landmark configuration 
is determined entirely by the reference form. A reference form is needed to serve as the basis 
for the calculation of the landmark displacement vectors in the Procrustes space on which the 
spline is calculated. To take the simplest example, the TPS of a reference form compared with 
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itself is a perfectly flat, undeformed, rectilinear grid. This obtains because the lengths of all  the 
displacement vectors in such a comparison are 0.0. Because all the displacement vectors in 
such a comparison are 0.0, the overall  bending energy of the deformation is also 0.0. For all 
other landmark configurations irrespective of whether those configurations are realized in the 
manner or actual  specimens or not, a set of displacement vectors will  be specified. The 
geometry of these vectors relative to the reference form will  allow a non-perfectly rectilinear, and 
in most cases non-flat, TPS grid to be calculated; in the case of the latter along with an 
associated bending energy.

As you’ve not doubt noticed I had to be careful with the wording of the sentence above. This is 
because of the hierarchy of geometric deformations that are possible in two and three-
dimensional forms. Recall  these can be subdivided into two groups: uniform and non-uniform 
(Fig. 2, see also Fig. 5 of MacLeod, 2010). Note that the two uniform deformation modes not 
removed by Procrustes superposition can be described mathematically by applying exactly 
same proportionate degree of deformation to each and every landmark location, such that the 
lengths of the implied landmark displacements are either exactly the same for all  landmarks but 
oriented in different directions (compression-dilation) or are linearly proportional to the scale of 
the distance between non-displaced landmarks and oriented in the same direction (shear). 
Because of this regularity in the structure of the displacement vectors, the TPS grids resulting 
from uniform deformations remain strictly planar surfaces. Since these uniform deformation 
surfaces exhibit no global  or localized displacements, their interpolated TPS surfaces are not 
‘bent’ and so have no associated bending energy. However, outside these two special cases of 
geometric  shape transformation, all  others exhibit heterogeneous distributions of displacement 
vectors that give rise to variably bent or warped TPS grid geometries along with associated 
bending energies.

Figure 2. The two uniform shape deformation modes not corrected for by 
Procrustes  superposition: compression-dilation (A) and shear (B). Arrows 
represent  deformation vectors between reference (red) and target (green) 
forms.  These classes of  deformation will produce TPS grid geometries in 
which only  the reference grid aspect ratio has been altered. See text for 
further discussion.

Perhaps the most unusual  aspect of the TPS formulation is that it’s not only the case that the 
spline is graphically dependent on the reference shape, all  the standard bending energy 
calculations are referenced uniquely to the reference shape too. This makes sense because of 
the physical metaphor that lies at the heart of the TPS model  — that bending energy is 
minimized across the space and that the spatial configuration of the reference form’s landmarks 
controls the local vs. global deformation model. From an analytical point-of-view though, this 
places some subtle and easily overlooked constraints on the interpretation of TPS/bending 
energy analysis results.

The most critical of these constraints is an appreciation of the importance of selecting an 
appropriate reference shape. Recall  in the column on shape theory (MacLeod 2009) I made the 
point that the reference shape controls the orientation of the tangent plane onto which the 
shapes that exist on the surface of the Procrustes shape hemisphere can be projected in order 
to obtain a linear, map-like ordination of shape variation based on their Procrustes distances. In 
principle, any shape that contains the same number of landmarks as the shapes in your sample 
could serve as the reference shape. But the single shape that best represents the distribution of 
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shapes in any sample is the mean shape. This is the shape that minimizes the overall deviation 
of landmarks from one another. As a result, the mean shape is also the shape that has the 
greatest overall similarity with all other shapes across the sample. 

In some instances, and for some types of analyses, it might seem logical to choose some shape 
other than the mean shape to serve as the reference. For example, in a taxonomic study it 
might seem reasonable to use the shape of the holotype as a reference. Similarly, in a study on 
ontogenetic  shape change it might seem appropriate to select the earliest or the latest 
developmental  stage as the reference shape and compare all other shapes in the sample to 
that. Unfortunately, these will, in almost all cases, lead to a needlessly distorted ordination of 
shapes within the space of the plane  tangent to the Procrustes shape hemisphere at the 
coordinate location of those potential reference shapes.

To illustrate the importance of this issue, let’s take a simple example that involves use of the 
TPS to make a comparison of the structure of the bending energy matrix for alternative 
reference forms. You will recall that the TPS calculations are based on the bending energy 
matrix (Lp-1) where Lp is as follows.
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In this equation, which is identical to equation 19.3 of the previous newsletter column (MacLeod 
2010), recall  U is a measure of the distances between landmarks in the reference shape (see 
Equation 19.1). The inverse of this matrix establishes the metaphor of pure, homogeneous 
bending energy in the sense that it is the simple inverse function of inter-landmark proximity.

The bending energy matrix can’t be visualized in its entirety using a TPS grid because that 
technique requires a contrast in landmark configurations between reference and target forms in 
order to supply the landmark displacement vectors. However, since the bending energy matrix is 
a symmetric, square matrix, it is susceptible to linear decomposition via eigenanalysis in 
precisely the same manner as we’ve decomposed covariance, correlation, distance, and other 
sorts of similarity matrices throughout this essay series. There is an important difference 
between the eigenanalysis of the bending energy matrix and the eigenanalysis of those other 
matrices though, and it’s this difference that really gets to the heart of the reference shape 
issue.

In all previous applications of eigenanalysis we’ve discussed we were decomposing a matrix 
that represented r-mode and/or Q-mode similarity/dissimilarity matrices between all pairs of 
objects in a sample. Eigenanalysis of such matrices results in the production of a set of 
orthogonal vectors that are aligned with directions of maximum variation or distance or similarity 
across the sample. If we’ve chosen our sample correctly, those directions also estimate the 
directions of maximum variation or distance or similarity in the parent population from which our 
sample was drawn. 

The difference in the case of the bending energy matrix is that it’s a matrix composed of 
distances between landmark positions drawn from a single object or specimen. Eigenanalysis of 
this matrix, when combined with the coordinate locations of the reference shape landmarks 
themselves, produces a set of orthogonal fields or modes of variation aligned with the directions 
of minimum landmark dispersion (= maximum bending energy) in the set of landmarks that 
describe this single object or specimen. Since the dispersion of landmarks is related directly to 
spatial  scale, this means that, in addition to being aligned with the directions of minimum 
landmark dispersion, these modes of form or shape variation will  also be ordered in terms of 
spatial  scale. Eigenvectors of the bending energy matrix that account for the highest bending 
energies will represent modes of deformation characterized by large deviations over small 
spatial  scales. Those accounting for the lowest bending energies will  represent modes of 
deformation characterized by small deviations over large spatial scales.
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Bookstein (1989, 1991; see also Rohlf 1993) have termed the eigenvectors of the bending 
energy matrix (Lp-1) ‘principal warps’ drawing on the clear and compelling analogy with principal 
components analysis. These authors also referred to the eigenvalues associated with those 
vectors ‘principal values’. In contrast, Slice et al. (1996) termed these same eigenvectors ‘partial 
warps’ in the sense that they describe parts of the deformation pattern inherent in the bending 
energy matrix. This dual  terminology has led to much confusion especially insofar as Bookstein 
(1989, 1991) had already used the term ‘partial warps’ for the result of a decidedly different 
procedure (see below). Despite claims that the Slice et al. (1996) terminology has become 
‘standard’ (e.g., Zelditch et al. 2004)2, for the purposes of this discussion I will employ to the 
original terminology. 

Because aspects of shape variation are removed from each landmark set during its conversion 
to shape coordinates, there are only k-3 positive principal values where k is the total number of 
landmarks used to sample the form. For the ten landmarks used to quantify cranidial  variation in 
our trilobite genera then, eigenanalysis yielded seven vectors with positive eigenvalues or seven 
principal warps. Four of these are shown for each of three reference configuration in Figure 3. 
Since any landmark configuration can be used as the basis for a principal  warp calculation 
Figure 3 includes principal  warps calculated for two real specimens (Acaste, Calymene) and 
one hypothetical configuration; the mean of consensus shape for the 18 trilobite specimens on 
which these ten landmarks can be located.

The principal  values (λ) for each principal warp are shown below the TPS grids in Figure 3, 
expressed as a percent contribution to the overall bending energy for each alternative reference 
shape. Although the principal warps have no intrinsic deformation — after all, they are 
calculated for a single specimen — an external scaling factor is usually applied to supply the 
deformation magnitudes required by the TPS calculations. Setting this scaling factor to a 
constant allows the spatial  heterogeneities implicit in the set of reference shape-specific 
principal warps to be displayed graphically. The arbitrary scaling factor selected for the 
calculation of all TPS grids in Figure 3 was 0.206.

Figure 3. Selected TPS deformation grids for principal warps calculated from the Acaste (left), Calymene 
(right) and trilobite sample mean or consensus shape (centre). Note the wide range of  variation inherent in 
the geometry of these TPC decompositions. See text for additional discussion.
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As you can see from these grids, the principal  warp decomposition for each alternative 
reference shape yields a set of increasingly more localized deformational geometries. In each 
case principal warp 1 specifies a broad deformation than encompasses the entire landmark set. 
These high-level deformation patterns contrast strongly with the deformations expressed by 
principal warp 7, each of which predominantly involves relative adjustments in the positions of a 
pair of adjacent landmarks near the mid-line and at either the anterior (Acaste, Calymene) or 
posterior (mean shape) ends of the cranidia. The deformation patterns expressed by principal 
warps 3 and 5 are, in all cases, intermediate between these extremes.

By the same token though, it should be noted that, while the deformation sequences for Acaste, 
Calymene, and the mean shape are all consistent and make reasonable sense by themselves, 
there seems little geometric  similarity between these deformation sequences. Principal warps 1 
and 7 for Acaste and Calymene are somewhat similar geometrically, but both of these differ 
markedly from the mean shape’s principal  warps 1 and 7. In contrast, principal warps 3 and 5 of 
Acaste and Calymene exhibit marked differences whereas they are broadly similar for 
Calymene and the mean shape. 

The point is that each potential reference shape — including the mean shape and especially for 
mean shapes calculated from samples containing high shape variation and low sample size — 
is going to incorporate atypical or idiosyncratic landmark placements to a greater or lesser 
extent. Because of the nature of the principal  warps, these idiosyncratic  differences will lead to 
broad and chaotic  incompatibilities between the principal  warp shape spaces calculated on the 
basis of individual  specimens. Selection of the mean shape as the reference configuration will 
minimize this tendency to some extent depending on how well constrained and representative 
the mean is with respect to the shapes included in the overall sample. But even use of the mean 
shape as a basis for these calculations will not stabilize the principal  warps space entirely. We 
will  return to a discussion of the implications of the inherent instability and idiosyncratic  nature of 
the principal warps sequence below.

Once specified, the principal warps of the reference configuration can be used as the 
mathematical basis for the creation of a linearized space within which any shape described by 
sets of corresponding landmarks may be projected. To make connection with the previous essay 
on shape theory (MacLeod 2009), the bending energy matrix represents the plane tangent to 
the Procrustes shape hemisphere at the point of the reference shape. The principal warps 
represent a set of orthogonal variables that re-describe the bending energy matrix as a series of 
spatially ordered modes of shape variation. Bookstein (1989, 1991), Rohlf (1993), and many 
others have referred to the projection of forms defined by comparable sets of landmarks and 
transformed into the principal warps space as ‘partial warps’. The representation of these 
projections can take two forms. 

The first, and possibly most analytically useful  of these is to represent the projection in the form 
of a scatterplot of scores of projected shapes along a space defined by the x and y principal 
warp vectors3  (Fig. 4). These scatterplots represent ordinations of between-specimen shape 
similarity and/or difference with respect to those aspects of shape deformation being 
represented by the principal  warp. The advantage of this sort of analysis is that, because the 
principal warp is referenced to a single specimen, the nature of the space so defined will not 
change with the acquisition of new specimens, removal  of non-reference specimens due to 
taxonomic  revision, etc. Recall this is not the case with the vast majority of standard multivariate 
data analysis methods (e.g., PCA, FA, PCoord, CVA, MDS) because they require a 
representation of similarity across a sample of objects. This, in turn, requires that the sample 
remain intact for the results of these analyses to remain meaningful. Change the sample in any 
way (e.g., drop some specimens out of the sample because of taxonomic revision, add some 
specimens to the sample because of new discovery) and you must re-compute all the results of 
these analyses for the patterns expressed to remain optimal and valid. This sample dependence 
is avoided in a principal warps analysis. So long as the reference shape remains valid, it defines 
the principal  warps space. Any shape described by a comparable set of landmarks may be 
projected into and/or removed from this principal warps space without altering the nature of that 
space in any way. 

The principle disadvantage of a principal warps analysis is exactly the same. Because the 
ordination space created is referenced to a single specimen, the influence of that specimen is 
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absolute. Since the spaces so created are not optimized over a sample of specimens they 
represent nothing more (or less) than the shape characteristics of that single specimen albeit 
one than might be a hypothetical best single representation of a sample or population such as 
the mean shape. But even in this case, all that is being used in the analysis is the raw spatial 
configuration of hypothetical landmark points without any associated indication of presence, 
much less the extent or character, of within-sample shape variation.

Figure 4.  Scatterplots of  trilobite partial warp scores on principal warps 1 (A), 3 (B), 5 (C) , and 7 (D) 
calculate using the trilobite sample mean shape as the reference shape.

The other manner in which partial warps have been used is to gain a visual sense of the 
deformational geometries being expressed by the distribution of partial  warps scores in the 
principal warps ordination space via TPS modelling. Figure 5 provides examples of such models 
for selected specimens whose ordination locations are shown in Figure 4. These models are 
heuristic devices that can be very useful in making qualitative interpretations of the shape 
ordination results and/or explaining the implications of those results to non-quantitative 
colleagues in a manner they can appreciate and understand.

Figure 5. Partial warp TPS grids for the Acaste and Calymene landmark configurations on the principal 
warps shown in Fig. 4. This grid represent the TPS interpolations from the reference shape in four of  the 
eigenvector decompositions of the mean shape’s bending energy matrix.
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Whereas the calculation of principal warps is quite easy computationally, and the manner in 
which they manage to support the creation of shape variables in which the deformational modes 
are ordered in terms of their spatial generality is quite elegant mathematically, their utility as 
analytical tools is, unfortunately, compromised by their inherent instability and absolute 
dependence on the configuration of a single set of landmarks. In the early days of geometric 
morphometrics it was more-or-less informally thought that the high-energy principal warps might 
be sufficiently localized spatially to represent taxonomic characters, developmental modules, 
and/or any of a number of other biological concepts based on the subdivision of a complex 
morphology into component parts, an assessment of whose shape would be useful. 

An example of this was an attempt by Zelditch et al. (1995) to use principal  warps analysis to 
define character states that could then be coded for use in a phylogenetic analysis. In a 
comment on this suggestion Rohlf (1998) noted that the inherent instability of principal warps 
spaces made ordinations of partial warp scores in the those spaces ill-suited for use in the 
context of the shape-based characterization of sets of morphometric  data. Moreover, the ad hoc 
mathematical decomposition of bending energy matrices defined on the basis of the arbitrary 
selection of a single specimen conforms to no recognizable theory of biological  homology; the 
theory that stands at the heart of the character concept. Rohlf went on to suggest that an 
analysis of geometric shape variation that was referenced to a sample of shapes under consider 
would be more a more appropriate approach to this general problem. Later, I followed Rohlf’s 
suggestion, albeit in a slightly different shape-analytical context, in an explicit test of the ability 
of morphometric  data to provide insight into phylogenetic  character state definition (MacLeod 
2002), Still later Zelditch and colleagues acknowledged the limitations of their previous use of 
principal warps analysis in this context (Zelditch et al. 2004).

Presently principal  warps analysis represents something of a blind alley in morphometrics From 
time-to-time you run across this strategy being used to ordinate shapes and test shape-related 
hypotheses (Naylor 1996, Rohlf et al. 1996). But these are usually example analyses whose 
real purpose is to illustrate the principal-partial warps technique than to use it as a tool to test 
biological hypotheses. Principal  and partial  warps concepts and calculations are also covered in 
most textbooks on morphometrics both older and new (Bookstein 1991, Reyment 1991, Dryden 
and Mardia 1998, Costa and Cesar 2000, Zelditch et al. 2004) despite their lack of a track 
record of clear and unambiguous utility and in the face of reasonably trenchant criticisms that 
have been levelled at the (comparatively few) investigations in which they have been employed. 
I suspect one of the main reasons interest in principal/partial warps survives is because their 
calculation is included in a number of standard morphometrics software packages. Prominent 
among these is Jim Rohlf’s tpsRelw package in which the ordering of the calculation steps 
implies to many that determination of principal warps is a necessary precursor to the calculation 
of relative warps, which have always been considered far more useful than principal-partial 
warps. I’ll use the next essay to explore this issue in the context of a description of the relative 
warps technique. In any event, the foregoing discussion is presented to inform the reader as to 
what principal and partial warps are, how they relate to TPS, to set the stage for the our 
discussion of how they relate to relative warps, and to emphasize that, if this approach to shape 
analysis is used at all, it should be with caution.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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