
PalaeoMath 101 

Groups II 
 
Last time out we began to confront the problems presented by datasets that include group-
level structure. We also developed some statistical tools we could use to determine whether 
that structure was reflected in statistically significant differences in group means and to assign 
unknown specimens to the closest group mean. So far, so good. But what we really want is 
some way of defining a space—like a PCA space or a PCoord space—in which the groups 
are maximally separated.  
 
You’ll recall this plot of the Iris data from the previous essay (Fig. 1, see Palaeontological 
Association Newsletter, 64:35–45, also see that essay, or the PalaeoMath101 Excel 
spreadsheet at http://www.palass.org/modules.php?name=palaeo_math&page=1 for a listing 
of these data). This captures the 
problem nicely. Given just four 
variables there are effectively six 
different ways of looking at the 
problem if we ignore plots of the 
four variables against themselves 
and the plots in which the same 
variables are plotted on different 
axes. Each plot yields some 
information about both within-group 
variation and between-group 
separation. Some plots seem more 
informative than others. But no 
single plot tells the whole story.  
 
Ideally we’d like to see our data 
transformed into a low-dimensional 
space, such that the majority of the 
between-group separation is 
summarized in just a few axes. 
Also, if the equations of the axes 
could give us some indication of 
which single or combination of the 
original variables was most 
important for achieving group 
discrimination (which is another 
way of saying ‘most important for group characterization’), that would be nice too. It’s another 
tall order, but our colleagues over in the maths department have some ideas along these 
lines. Let’s have a look. 
 
Before we can begin our discussion make sure we have some basic concepts straight, 
specifically the difference between discrimination and classification. Both involve groups but 
there is a world of difference between them—mathematically speaking—that we need to 
understand before the mathematical operations will make much sense. Understanding these 
concepts will also help us understand the difference between the material I presented in the 
Groups I essay and what I’ll be presenting below. 
 
Discrimination is the act of determining a mathematical expression that distinguishes between 
groups of measurements or observations. In order to perform a discrimination or ‘discriminant’ 
analysis the groups need to be specified at the outset of an investigation. Classification is the 
act of determining how many groups are present in a collection of measurements or 
observations. This procedure does not require knowledge of the number of groups 
beforehand. Rather, that information is the purpose or result of the classification analysis. 
One group of techniques tells you how best to separate groups (discriminant analysis) the 
other tells you how many groups a sample contains (classification analysis). Of course, in the 
real world palaeontologists want to know both. The problem is you can’t get at both questions 
in any single analysis. The mathematics that optimize the discrimination of groups of data 

Figure 1. Crosstabulation diagram for Fisher Iris data. I. 
setosa (cyan), I. versicolor (black), I. virginica (yellow). 
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require specification of the number of groups to be discriminated and the mathematics of 
classification analysis require that the characteristic differences between groups be known. 
What to do? 
 
Inevitably, we fall back on using combinations of analyses. Principal components analysis, 
factor analysis, principal coordinates analysis, correspondence analysis and the rest of the 
‘single group’ methods can be used to obtain a sense of how many groups there might be in a 
dataset. They can do other things too, but practically speaking this is one of their primary 
uses. Once some hypotheses about possible classification schemes have been developed 
based on results of a single-group analysis, those can be checked for statistical significance 
using the methods of mean-difference analysis (e.g., likelihood-ratio test, Hotelling’s T

2
-test). 

These results will allow decisions to be made regarding a viable classification scheme, after 
which consideration of the discriminant problem can begin. Mahalanobis distances can be 
used to affect identification by assigning individuals to groups based on their proximity to the 
group centroid (after scaling the variables by the inverse of the pooled covariance matrix). 
However, the space in which the Mahalanobis distance operates has not been optimized for 
maximal group separation. Nonetheless, it is possible to create a space that optimizes the 
difference between classification groups—at least the distances between their centroids. It is 
to this missing piece of the puzzle we now turn. 
 
Most discussions of discriminant analysis begin with a discussion of the two groups case—
where the point is to find a linear discriminant function that separates two groups. This is 
obviously the simplest case of discrimination and, because of this the mathematics involved 
can be simplified. Nevertheless, the two-sample case hardly ever comes up in real situations. 
For the most part we need to distinguish between three or more groups and so need an 
approach to determining discriminant functions that is powerful enough to handle any number 
of groups. Since the simplified mathematics of two-group linear discriminant analysis cannot 
be extended to the multiple-groups case, we’ll proceed directly to the multiple-groups 
problem, the most popular solution to which is called canonical variates analysis (CVA). 
Should we ever need to discriminate between just two groups, CVA works fine for those data 
too. 
 
In our example analysis we’ll stick with the Fisher Iris data from the previous essay, but bump 
up the number of individuals in each group in order to get a better estimate of group variation 
and to illustrate some features of the technique. The following table lists these example data. 
 
Table 1. First twenty-five specimens from each species included in Fisher (1936) Iris data. 

 Iris setosa  Iris versicolor 

 Petal  Sepal  Petal  Sepal 

 Length Width  Length Width  Length Width  Length Width 

            

1 5.1 3.5  1.4 0.2  7.0 3.2  4.7 1.4 

2 4.9 3.0  1.4 0.2  6.4 3.2  4.5 1.5 

3 4.7 3.2  1.3 0.2  6.9 3.1  4.9 1.5 

4 4.6 3.1  1.5 0.2  5.5 2.3  4.0 1.3 

5 5.0 3.6  1.4 0.2  6.5 2.8  4.6 1.5 

6 5.4 3.9  1.7 0.4  5.7 2.8  4.5 1.3 

7 4.6 3.4  1.4 0.3  6.3 3.3  4.7 1.6 

8 5.0 3.4  1.5 0.2  4.9 2.4  3.3 1.0 

9 4.4 2.9  1.4 0.2  6.6 2.9  4.6 1.3 

10 4.9 3.1  1.5 0.1  5.2 2.7  3.9 1.4 

11 5.4 3.7  1.5 0.2  5.0 2.0  3.5 1.0 

12 4.8 3.4  1.6 0.2  5.9 3.0  4.2 1.5 

13 4.8 3.0  1.4 0.1  6.0 2.2  4.0 1.0 

14 4.3 3.0  1.1 0.1  6.1 2.9  4.7 1.4 

15 5.8 4.0  1.2 0.2  5.6 2.9  3.6 1.3 

16 5.7 4.4  1.5 0.4  6.7 3.1  4.4 1.4 

17 5.4 3.9  1.3 0.4  5.6 3.0  4.5 1.5 

18 5.1 3.5  1.4 0.3  5.8 2.7  4.1 1.0 
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19 5.7 3.8  1.7 0.3  6.2 2.2  4.5 1.5 

20 5.1 3.8  1.5 0.3  5.6 2.5  3.9 1.1 

21 5.4 3.4  1.7 0.2  5.9 3.2  4.8 1.8 

22 5.1 3.7  1.5 0.4  6.1 2.8  4.0 1.3 

23 4.6 3.6  1.0 0.2  6.3 2.5  4.9 1.5 

24 5.1 3.3  1.7 0.5  6.1 2.8  4.7 1.2 

25 4.8 3.4  1.9 0.2  6.4 2.9  4.3 1.3 

            
! 125.7 87.0  36.5 6.2  150.3 69.4  107.8 33.6 

Min. 4.3 2.9  1.0 0.1  4.9 2.0  3.3 1.0 

Max. 5.8 4.4  1.9 0.5  7.0 3.3  4.9 1.8 

Mean 5.0 3.5  1.5 0.2  6.0 2.8  4.3 1.3 

Median 5.0 3.4  1.5 0.2  6.1 2.8  4.5 1.4 

Variance 0.2 0.1  0.0 0.0  0.3 0.1  0.2 0.0 

S. Dev. 0.4 0.4  0.2 0.1  0.5 0.4  0.4 0.2 

            

            

 Iris virginica       

 Petal  Sepal       

 Length Width  Length Width       

            

1 6.3 3.3  6.0 2.5       

2 5.8 2.7  5.1 1.9       

3 7.1 3.0  5.9 2.1       

4 6.3 2.9  5.6 1.8       

5 6.5 3.0  5.8 2.2       

6 7.6 3.0  6.6 2.1       

7 4.9 2.5  4.5 1.7       

8 7.3 2.9  6.3 1.8       

9 6.7 2.5  5.8 1.8       

10 7.2 3.6  6.1 2.5       

11 6.5 3.2  5.1 2.0       

12 6.4 2.7  5.3 1.9       

13 6.8 3.0  5.5 2.1       

14 5.7 2.5  5.0 2.0       

15 5.8 2.8  5.1 2.4       

16 6.4 3.2  5.3 2.3       

17 6.5 3.0  5.5 1.8       

18 7.7 3.8  6.7 2.2       

19 7.7 2.6  6.9 2.3       

20 6.0 2.2  5.0 1.5       

21 6.9 3.2  5.7 2.3       

22 5.6 2.8  4.9 2.0       

23 7.7 2.8  6.7 2.0       

24 6.3 2.7  4.9 1.8       

25 6.7 3.3  5.7 2.1       

            
! 164.4 73,2  141.0 51.1       

Min. 4.9 2.2  4.5 1.5       

Max. 7.7 3.6  6.9 2.5       

Mean 6.6 2.9  5.6 2.0       

Median 6.5 2.9  5.6 2.0       

Variance 0.5 0.1  0.4 0.1       
S. Dev. 0.7 0.4  0.6 0.3       

 
Canonical variates analysis was invented by R. A. Fisher (1936) with important contributions 
by Bartlett (1951, regarding how to calculate the inverse of a matrix), Mahalanobis (1936, 
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regarding use of Mahalanobis distances in discriminant analysis), and Rao (1952, in 
synthesizing Fisher’s and Mahalanobis’ concepts into the modern procedure). The basic idea 
behind modern approaches to CVA is reasonably simple. It is in essence a two-stage rotation 
of a data matrix that has been subdivided into groups, hence the name canonical variates.  
 
Campbell and Atchley (1981) provide an excellent discussion of the geometric 
transformations implicit in CVA. Their presentation has served as a model for the geometric 
explanation presented below. In the actual algorithm (which we’ll discuss after the geometric 
presentation) several of these steps are performed simultaneously. Most textbook 
descriptions of CVA only focus on presenting a recipe of equations and plots such that 
comparatively few practitioners gain much understanding of the geometry inherent in the 
methods. In my presentation we’ll review of few basic equations (which readers of this column 
have seen before) and then let the pictures do most of the talking. 
 
First, recall that in our previous discussion of the likelihood-ratio test we developed the idea 
that total similarity relations (T) within grouped data matrices could be subdivided into ‘within-
groups’ (W) and between-groups (B) partitions. 
 
 

! 

T = B +W  (11.1) 
 
There are different ways to operationalize this concept, but in the case of CVA the T matrix 
usually represents the total sums of squares and cross products (SSQCP) for all variables 
and has the following form. 
 

 

! 

tr,c = (xi,r, j " x r )(xi,c, j " x c )
i=1

n j

#
j=1

k

#  (11.2) 

 
In this expression r and c refer to the rows and columns of the T matrix (any cell of which is 

occupied by a value t) with 

! 

x 
r
 and 

! 

x 
c
 representing the grand means for the entire, combined 

dataset. The grand mean is the centre of the pooled sample of all measurements. Matrix T 
then summarizes the dispersion of the total dataset about this group-independent, fixed 
reference. 
 
The W matrix represents the within-groups SSQCP matrix and has a corresponding form. 
 

 

! 

wr,c = (xi,r, j " x jr )(xi,c, j " x jc )
i=1

n j

#
j=1

k

#  (11.3) 

 
Once again, r and c refer to the rows and columns of the W matrix (any cell of which is 

occupied by a value, w). Now the variables 

! 

x jr  and 

! 

x jc  refer to the analogous group-specific 

means. Here, the group mean is the centre of the cloud of points representing each group in 
Figure 1. Matrix W, then, summarizes the dispersion of each dataset relative to its own group-
specific reference. 
 
Once T and W have been found the most intuitively way of determining the B matrix is to 
simply subtract each element of the W matrix from the corresponding element of the T matrix 
(B = T - W). Conceptually though, the between-groups matrix summarizes the dispersion of 
the group means from the grand mean.

1
  

 

                                                        
1
 Confusingly (in my view) a number of programmes currently available for implementing CVA operate 

on matrices that violate the basic T = W + B relation. In such cases the authors of those algorithms are 

usually trying to take account of differences between the number of specimens representing each 
group. Unfortunately, they rarely specify exactly how their programmes undertake this correction, often 
resulting in slight non-comparabilities between the results reported by different programmes. 
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In our geometric example analysis we’ll reduce the Table 1 data to just two variables: petal 
width and petal length.

2
 Canonical variates analysis begins (conceptually) with a standard 

PCA analysis of the within-groups dispersion matrix (Fig. 2). 
 

 

Figure 2. Stage 1 CVA implicit rotation. A. Scatterplot of first two Iris variables for 
example dataset. B. Orientation of the two pooled-sample principal components of the 
within-groups SSQCP matrix (W). 

 
The purpose of this step is to re-describe the dispersion of the entire dataset in terms of a set 
of uncorrelated variables. Although the W matrix calculates dispersion from the group means, 
this operation involves a rigid rotation of the data about the grand mean. In order to facilitate 
plotting it is often convenient to mean-centre the entire dataset about the grand mean prior to 
analysis, in which case the grand mean will be the origin of the data’s coordinate system. This 
convention has been followed in Figure 2 and throughout all subsequent analyses. 
 
Next, CVA performs a somewhat counter-intuitive scaling operation. As you can see from 
Figure 2B, the scatters of the original groups are elongated with much more variance along 
PC-1 than PC-2. This reflects the greater variation of the petal length relative to petal width 
data, which in turn reflects the fact that Iris petals are much longer than they are wide. In 
order to achieve maximum separation between the group centroids the principal components 
are scaled by the square root of the associated eigenvalue. This operation involves 
multiplying each individual’s PC score by the reciprocal of that square root. The result of this 
intermediate scaling operation is illustrated in Figure 3.  
 

 

Figure 3. Intermediate scaling operation of a CVA. A. Scatterplot of Iris PC scores for 
the Stage 1 rotation (see Fig. 2). B. Result of scaling the two within-groups principal 
components by the square roots of their associated eigenvalues. Note difference in 

separation of the group centroids (black squares) after scaling. 

 

                                                        
2
 A listing of all calculations is provided in the PalaeoMath101 Excel spreadsheet at 

http://www.palass.org/modules.php?name=palaeo_math&page=1. 
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The effect of this scaling is subtle, but important. Note how the range of variation for each 
group has been adjusted so that it is subequal along both axes. This is a form of data 
standardization. The scaling operation forces each eigenvector (= principal component) to 
have the same length. Thus, the data have been relatively stretched along PC-2 (the shorter 
eigenvector) and compressed along PC-1 (the longer eigenvector). This transforms the 
formerly elongate distributions of the group-based point clouds into forms that are more 
spherical. Note also how this operation has greatly increased the separation of group 
centroids or means from one another, especially in terms of the separation of I. setosa from 
the other two species. That looks like a big advantage in terms of accomplishing 
discrimination, which is what CVA is all about. But the significance of this operation is actually 
both more and less profound than it might appear at first. 
 
What we’re doing by scaling the PC space in this way is reminding ourselves of what we 
mean by ‘distance’ in a multivariate space. As we discussed last time, correlations between 
variables matter when it comes to assessing the separation between any two points in a 
space defined by multiple variables. We apply a similar scaling operation to the Mahalanobis 
distance calculation specifically to correct for distortions caused by inter-variable correlations. 
The scaling operation we’ve just performed in the intermediate stage of our CVA analysis 
distorts the PC space such that the geometric reality of the distribution of points in that space 
matches our ‘common sense’ notion of distance (recall we performed the original PC rotation 
on W, not T). This scaling operation shows us that the notion of distance between points in 
the standard PC multivariate space can be just as distorted as it is in ordinary scatterplots. By 
using the eigenvalues to scale the eigenvectors we can construct a ‘true’ picture of the 
separations between points in this group-defined space, one that conforms to the world of 
spatial relations in which we live. Thus, our three Iris species are actually more distinct than 
figures 2A, 2B, or 3A would have us believe. That’s the profound bit. The trivial bit is that all 
this complexity is taken into consideration by the Mahalanobis distance. Thus we’ve had a 
way of taking the distortions inherent in the spaces represented by 2A, 2B, and 3A into 
account all along. 
 
The second and final stage of a CVA focuses on the group centroids. While the first rotation 
summarized within-groups dispersion patterns, a second rotation is required to summarize 
between-groups dispersion patterns. This is accomplished by conducting a second PCA, this 
time using only data from the positions of the group means in the orthogonal and variance 
standardized—or orthonormal—space (Fig. 3B). Figure 4 illustrates the result of this 
operation. 
 

 

Figure 4. Stage 2 CVA implicit rotation. A. Iris group centroids plotted in the 
within-groups orthogonal-orthonormal space (see Fig. 3B) with between groups 

PC (= CVA) axes. B. Reduced Iris dataset plotted in the space defined by the 
CVA axes. 

 
The scatterplot shown in Figure 4B is typically presented as the CVA ordination. Generally 
speaking there are one fewer CVA axes with positive between-groups eigenvalues than the 
number of groups present in the analysis. Once these results have been obtained most 
routines will also report statistical tests for group distinctiveness (e.g., Hotelling’s T

2
) and a 
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Mahalanobis distance-based cross-tabulation analysis of the data used to define the CVA 
space. The former are used to confirm group distinctiveness (see previous column for 
examples and details of these calculations) while the purpose of the latter is to determine the 
degree to which these particular CVA results can provide a reliable basis for achieving 
discrimination between the groups.  
 
Note these are very different questions. It is quite possible for group means to be distinct 
relative to their within-groups dispersion yet contain so much overlap between their respective 
point clouds that effective discrimination is more-or-less impossible. Results of this cross-
tabulation analysis are usually presented in the form of a ‘confusion matrix’ that summarizes 
the extent to which specimens assigned a priori to a given group are placed in the appropriate 
group by a Mahalanobis distance analysis (see previous column for details of this 
calculation). The confusion matrix for the two-variable Iris dataset is provided below. 
 

 
 
As can be seen from both this matrix and Figure 4B, I. setosa is perfectly discriminated from I. 
versicolor and I. virginica by the first CVA axis. However, approximately one-third of the 
specimens assigned to the latter two species are mis-assigned to these other groups. Is this a 
good result? The answer depends on the question you’re asking along with your ability to 
collect other information and/or access additional specimens of each group. If it is of the 
utmost importance to identify all specimens perfectly using only these variables, the fact that 
this analysis produced something like 35 percent incorrect identifications for two of the three 
groups for the sample used to define the discriminant space is a matter of concern. Still, for 
many applications—including most replication-based studies of systematic identifications—a 
consistent identification accuracy of 65 percent is competitive with most human experts (see 
MacLeod 1998; Culverhouse in press). Of course, this question is moot for the Iris dataset as 
we have ready access to measurements from additional specimens (which would improve our 
estimates of W and B) and additional variables (see below). 
 
There is one additional issue we need to discuss before we leave this simple example. As 
with all the single-group data analysis methods we’ve discussed to date, we would like to use 
the equations of the CVA axes to tell us something about the geometric meaning of the space 
portrayed in Figure 4B, especially the identities of the variables most useful for group 
characterization/discrimination. For CVA this is more complex than for the previous ordination 
methods we’ve discussed. 
 
The first interpretational complication arises because of the nature of the mathematical 
operations implicit in CVA. In Figure 4B the CVA axes are portrayed (correctly) as being 
orthogonal to one another. But recall the PCA that produced those axes was undertaken on a 
series of group centroid locations that had already been transformed from their original 
positions through rotation (Fig. 2) and differential scaling (Fig. 3). In order to determine how 
the CVA axes relate to the original variables it’s not enough to simply inspect the CVA axis 
loadings because those refer to the rotated and scaled variables. Rather, we must undo these 
prior transformations in order to understand how the CVA loadings relate to the original data. 
Figure 5 illustrates the results of these back-transformation operations. 
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Figure 5. Back-calculation of final CVA axis orientation through the intermediate stages of the 

canonical rotations and scalings. A. Orientation of final CVA axes in the space of the scaled 
within-groups principal components (compare to Fig. 3A). B. Orientation of final CVA axes in 
the space of the raw within-groups principal components (compare to Fig. 3B). C. Orientation 
of final CVA axes in the space of the original variables (compare to Fig. 2). 

 
The really important thing to note in these diagrams is that, unlike PCA axes which are 
orthogonal in the space of the original variables (see Fig. 2A), CVA axes are usually non-
orthogonal (i.e. not oriented at right angles to one another) in the space of the original 
variables. This makes CVA axes more difficult to interpret because the same original 
variable(s) may have a dominant influence on the projection of specimens onto more than a 
single CVA axis. In this particular Iris analysis petal length is the dominant variable involved in 
separation of I. versicolor and I. virginica, but petal width has a strong influence on group 
separation as well. Regardless, these variables are not very efficient discriminators of those 
groups. Both petal length and width variables are also involved in the discrimination between 
I. setosa and the other two species. Because the traces of both CVA axes exhibit positive 
slopes in the space of the original variables, their relative proportions of influence are similar. 
But in the latter case the discrimination efficiency is much better. By comparing the sequence 
of Figure 5 plots we can also trace the alignment of the final CVA axes with the dominant 
modes of within-groups and between-groups variation. 
 
There is yet another problem with the assignment of importance to the canonical variables, 
though. Campbell and Atchley (1981) note that many authors assess importance of the 
variables to between-groups discrimination by scaling the canonical variate loadings by the 
standard deviations of the pooled within-groups variables. This operation produces a crude 
and ad hoc measure of the correspondence between high levels of variation in aspects of the 
sample and alignment of the between-groups discriminant axes. The fly in the ointment here 
is covariation. If two variables covary to a substantial degree both could be identified as 
having either a large or small importance with respect to group discrimination, whereas one 
may be the real driver of this relation and the other a more passive passenger. Campbell and 
Reyment (1978, see also Campbell 1980) advocate analysis of the stability of the CV 
loadings as a method of approaching this problem and have developed the method of 
‘shrunken [CVA] estimators’ to be used in this context. 
 
Now that we understand exactly what CVA is doing to our data we can briefly review the 
mathematics used in contemporary approaches to implementing this method (in which 
several of the steps outlined above are combined) and undertake an expanded example 
analysis using the full 3 group, 25 specimen, and 4 variable Iris dataset. 
 
The modern algorithm is based on the parallel between CVA and the statistical procedure 
known as analysis of variance (ANOVA). We begin with the T, W, and B matrices calculated 
in precisely the manner given by equations 11.1, 11.2, and 11.3 (above). Rather than 
undertaking the separate rotation and scaling operations outlined in our previous geometric 
dissection of the method, these steps are combined by noticing that the quantity we are after 
is a set of axes that are aligned with the maximum differences between the B and W 
matrices. In effect we need to maximize the B/W ratio. Without going into the precise matrix 
equation derivation, suffice it to say that this ratio will be maximized by calculating the first 



 9 

eigenvector (principal component) of the W
-1

B matrix
3
. Subsequent eigenvectors of this matrix 

represent subdominant modes variation that contribute most (in a major-axis sense) to 
maximizing the distinction between B and W. Together, this set of eigenvectors will represent 
the best single set of discriminant axes that can be calculated for the sample. Of course, 
since discrimination between groups is the focus of this analysis there will be one fewer 
eigenvectors than the number of groups in the dataset that are assigned positive eigenvalues.  
 
A minor complication arises owing to the fact that the W

-1
B matrix will not be symmetric. This 

is a direct reflection of the implicit differential scaling of B by the within-groups eigenvalues. 
Fortunately, this situation is easily handled by employing singular value decomposition (SVD) 
as the basis for decomposition of the W

-1
B matrix. Recall that the eigenanalysis of a non-

symmetric matrix produces non-orthogonal eigenvectors in the context of the original 
variables, which we have also seen is the case for CVA axes (see Fig. 5). 
 
Applying these relations to the full Iris dataset (Table 1), the total, within-groups, and 
between-groups matrices are given below. 
 

 
 
The basis matrix for the CVA analysis, then, is as follows. 
 

 

                                                        
3
 Recall the -1 superscript refers to the inverse of a matrix. The W

-1
B matrix then is the matrix formed by 

the between-groups SSQCP matrix being pre-multiplied by the inverse of the within-groups SSQCP 

matrix (see example calculations in the PalaeoMath101 Excel spreadsheet at 
http://www.palass.org/modules.php?name=palaeo_math&page=1. 
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Note the non-symmetrical form of this matrix. Decomposition using SVD yields the following 
eigenvectors and eigenvalues. 

 

 
 
Observe there are only two eigenvectors with non-zero eigenvalues. These are the canonical 
variate (= discriminant) axes. Plotting the original data in the space of these two axes 
produces the following ordination. 
 

 

Figure 6. Scatterplot of Iris data in the space of the two CVA axes. 

 
Once again, I. setosa is well separated from I. versicolor and I. virginica. Unlike the previous 
two-variable result, however (see Fig. 4B), the presence of the additional septal variables 
allow a much better discrimination between these latter two species, albeit along the same 
CV axis. The fact that CV-2 plays such a small role in between-group discrimination is 
reflected in its small eigenvalue. This far superior discriminant result is reflected in the 
confusion matrix for the analysis which measure the ability of the variable set to characterize-
discriminate between the different groups. 
 

 
 
There are many variants to this generalized procedure, as there are with all the methods 
we’ve covered. The important thing, as always, is to understand the basic concepts so you 
can make appropriate interpretations of the results reported by any programme.  
 
As I hope you can appreciate now, CVA is very different from PCA, principal coordinates 
(PCoord), factor analysis (FA), correspondence analysis (CA), and the other data analysis 
procedures we’ve discussed to date. Whereas it wouldn’t make much sense to (say) perform 
a PCA analysis and then submit the result to a correspondence analysis, there is an inherent 
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logic to submitting the results of a PCA to a CVA. For example, PCA could be used to gather 
the principle sources of variation in the raw data into a small number of composite variables. 
Then these could be used as the basis for optimal discriminant functions.  
 
A final word on the ‘supernatural’ aspects of CVA (and other multivariate methods). As should 
seem obvious to you by now, multivariate procedures are absolutely dependent on using sets 
of specimens to estimate the within-groups and between-groups geometry of their variables 
or measurements. Single-group methods (e.g., PCA, PCoord) focus only on within-groups 
variation while multiple-group methods (e.g., PLS, CVA) focus on the within-groups and 
between-groups distinctions. In the Iris dataset we saw dramatic improvement in the 
between-groups discrimination resulting from addition of two variables: septal length and 
septal width. Generally speaking the more sources of information you have about a system of 
measurements the better. But this improvement comes at a cost. 
 
Consider a square space containing 100 evenly spaced points. If the square is 10 units on a 
side the inter-point distance is 0.010. That’s pretty good characterization of the space. 
However, if we turn the square into a cube by adding another variable the same number of 
points only achieves an inter-point spacing of 0.1. That’s an order of magnitude reduction in 
our information about the space in which our data reside. In order to achieve the same 
resolution in the cube space I’d need to increase sample size to 1000. If we added additional 
variables we’d need to increase sample size to … you get the picture.  
 
Adding variables to a multivariate problem almost always results in a substantial drop in 
resolution. This is called the ‘curse of dimensionality’ (Belman 1957). The effects of the curse 
are especially noticeable in discriminant analyses because we’re trying to estimate the 
character of within-groups variation and between-groups variation. For the Iris dataset, 
because the number of variables was small and the number of specimens relatively large our 
CVA analysis was able to pick up major differences in W and B despite the fact that addition 
of the septal variables resulted in an overall loss of resolution. In other words, we beat the 
curse of dimensionality, this time. If you undertake multivariate procedures be mindful of the 
curse and don’t expect to beat it all the time.  
 
 

Norman MacLeod 

Palaeontology Department, The Natural History Museum 
N.MacLeod@nhm.ac.uk 
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Don’t forget the Palaeo-math 101 web page, now at a new home at:  
http://www.palass.org/modules.php?name=palaeo_math&page=1 
 
 


